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Introduction

M ANY optimal control problems, and their associated Hamil-
tonian boundary-value problems (HBVPs) that arise from the

� rst-order optimality conditions, are hypersensitive.1,2 An optimal
control problem is hypersensitive if the time interval of interest is
long relative to the rates of expansion and contraction of the Hamil-
tonian dynamics in certain directions in a neighborhood of the op-
timal solution. Hypersensitive HBVPs are a challenge to solve nu-
merically because they suffer from ill conditioning due to extreme
sensitivity to unknown boundary conditions. When the rates are fast
in all directions, the HBVP and the optimal control problem are
called completely hypersensitive; when the rates are fast only in
some directions, the HBVP and the optimal control problem are
called partially hypersensitive. In this Note we are interested in
completely hypersensitive HBVPs.

The solution of a completely hypersensitive HBVP can be ap-
proximated by concatenating an initial boundary-layer segment, an
equilibrium segment, and a terminal boundary-layer segment.1,2 The
initial boundary-layer segment has no unstable component in for-
ward time whereas the terminal boundary-layer segment has no
unstable component in backward time. This three-segment approx-
imation improves as the time interval of interest increases.

Recently, a new method has been developed to solve completely
hypersensitive nonlinear HBVPs arising in optimal control.1,2 This
method is inspired by the computational singular perturbation
methodology for stiff initial-value problems.3,4 The method uses
a dichotomic basis to decompose the nonlinear Hamiltonian vector
� eld into its contracting and expanding components, thus allow-
ing the missing initial conditions required to specify the initial and
terminal boundary-layer segments to be determined from partial
equilibrium conditions. The key feature of the method is that, by
using the dichotomic basis, the unstable (expanding) component
of the Hamiltonian vector � eld can be eliminated, thereby remov-
ing the hypersensitivity. The solution of the initial boundary-layer
segment is then found by integrating the stable component of the
Hamiltonian vector � eld forward in time. Similarly, the solution
of the terminal boundary-layer segment is found by integrating the
unstable component of the Hamiltonian vector � eld backward in
time.

For most problems it is not possible to � nd a dichotomic basis.
When a dichotomic basis cannot be determined, the aforementioned
approach can still be applied using anapproximate dichotomic basis,
that is, a basis that approximately decouples the contracting and ex-
panding components of the Hamiltonian system.1,2 In the latter case,
the hypersensitivity is not completely eliminated, but is eliminated
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only over the time interval of interest. Furthermore, the solution of
the initial and terminal boundary-layer segments cannot be found
via a single integration (as is the case for a dichotomic basis), but
must be found via successive approximation. Reference 2 describes
a method for constructing an approximate dichotomic basis from
local eigenvectors and describes a successive approximation proce-
dure using this eigenvector approximate dichotomic basis.

Previously, the eigenvector approximate dichotomic basis method
has been applied successfully to simple problems.1,2 The purpose
of this Note is to demonstrate that this method can be extended
to problems with relatively complex dynamic models. A particular
optimal control problem that exhibits the aforementioned hypersen-
sitivity and is of practical interest in aerospace engineering is the
minimum time-to-climb problem for a supersonic aircraft. Because
this problem has been such a great challenge to solve computation-
ally, it has been the topic of many research studies and is considered
a benchmark problem in optimal control. The history of this prob-
lem and other problems in performance optimization of supersonic
aircraft is extensive (see Refs. 5–8 and the references therein for
more details).

The hypersensitivity along a time-optimal trajectory for a super-
sonic aircraft exists in regions where the aircraft is � ying at transonic
and higher speeds.5 In this region the longitudinal dynamics evolve
on two timescales. When approximated to zeroth order on the fast
timescale, the reduced-order HBVP in this transonic region becomes
completely hypersensitive.

The remainder of this Note focuses on applying the eigenvector
approximate dichotomic basis method to � nd the solution of the
initial boundary-layer segment to zeroth order on the fast timescale
during transonic � ight of the minimum time-to-climb problem for a
supersonic aircraft. Two key results are illustrated. First, whereas the
reduced Hamiltonian dynamics are unstable and the corresponding
HBVP is completely hypersensitive, the eigenvector approximate
dichotomic basis method eliminates the hypersensitivity on the time
interval of interest. Second, it is shown that the successive approx-
imation procedure converges to a solution of the reduced HBVP to
within a speci� ed convergence tolerance. The results presented here
suggest that the approach may be extendible to problems that evolve
on multiple timescales.

Equations of Motion
Consider an aircraft � ying in the vertical plane over a � at Earth.

The longitudinal equations of motion are given as9

ÇE = (V / mg)(T ¡ D), ² Çh = V sin c

² Çc = (g / V )(n ¡ cos c ) (1)

where m is the vehicle mass, g is the acceleration due to gravity, E is
the energy altitude, h is the altitude, c is the � ight-path angle, V =p

[2g(E ¡ h)] is the speed, T = T (V , h) is the thrust, D = D(V , n)
is the drag, n is the load factor, that is, the vertical component of
the lift, and is the control, and ² is an arti� cial small parameter that
identi� es the timescale separation. A complete description of the
aerodynamic and thrust models is given in Ref. 9.

Optimal Control Problem
It is desired to steer the vehicle from an initial state

[E(0) h(0) c (0)] to a terminal state [E (t f ) h(t f ) c (t f )] while
minimizing the time given by the cost functional

J =

Z t f

0

dt (2)

The Hamiltonian is given as

H = 1 + k E ÇE + k h Çh + k c Çc (3)

The corresponding adjoint equations are given as

Çk E = ¡
@H ¤

@E
, ² Çk h = ¡

@H ¤

@h
, ² Çk c = ¡

@H ¤

@ c
(4)
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where H ¤ is the value of the Hamiltonian evaluated at the optimal
control n ¤ (see Ref. 9 for details). The resulting HBVP consists of
the differential equations

ÇE =
V

mg
(T ¡ D ¤ ), ² Çh = V sin c , ² Çc =

g

V
(n ¤ ¡ cos c )

Çk E = ¡
@H ¤

@E
, ² Çk h = ¡

@H ¤

@h
, ² Çk c = ¡

@H ¤

@ c
(5)

and the boundary conditions

E (0) = E0 , h(0) = h0 , c (0) = c 0

E(t f ) = E f , h(t f ) = h f , c (t f ) = c f (6)

Reduction of Order in Left Boundary Layer
For initial conditions where V / a ¼ 1 (where a is the local speed

of sound) and terminal conditions where V /a > 1, the HBVP of
Eqs. (5) and (6) becomes hypersensitive5 and the optimal trajectory
is composed of a fast initial boundary-layer segment, a slow middle
segment, and a terminal fast boundary-layer segment. Denoting the
fast timescale by s = t / ², the dynamics can be written in terms of
s as

E 0 = ²
V

mg
(T ¡ D ¤ ), h 0 = V sin c , c 0 =

g

V
(n ¤ ¡ cos c )

k 0
E = ¡ ²

@H ¤

@E
, k 0

h = ¡
@H ¤

@h
, k 0

c = ¡
@H ¤

@ c
(7)

where (¢ ) 0 denotes differentiation with respect to s .

Completely Hypersensitive HBVP
The solutions in the initial and terminal boundary layers have

the same structure except that the directions of time are opposite.
Consequently, it is suf� cient to focus on the initial boundary-layer.
The zeroth-order approximation to the optimal trajectory in the ini-
tial boundary-layer can be obtained by setting ² ´ 0 (Ref. 8). The
reduced-order HBVP on the fast timescale then becomes completely
hypersensitive1,2 and consists of the Hamiltonian differential equa-
tions

h 0 = V sin c , c 0 =
g

V
(n ¤ ¡ cos c )

k 0
h = ¡

@H ¤

@h
, k 0

c = ¡
@H ¤

@ c
(8)

together with the boundary conditions

h( s = 0) = h0, c ( s = 0) = c 0

h( s ibl) = heq , c ( s ibl) = c eq = 0 (9)

where s ibl is the end of the left boundary-layer segment. The values
E = E(0) = const, k E = k E (0) = const, heq , and c eq correspond to
an equilibrium condition at the end of the initial boundary-layer to
zeroth order on the fast timescale and are found using the method
of matched asymptotic expansions as described in Ref. 8.

Approximate Dichotomic Basis Method
For suf� ciently large values of s ibl, the solution of the reduced

HBVP of Eqs. (8) and (9) is well approximated by a segment that lies
in the stable manifold of a saddle point1,2 of the Hamiltonian vector
� eld of Eq. (8). Consequently, this reduced HBVP can be solved us-
ing the previously developed eigenvector approximate dichotomic
basis method.1,2 A brief summary of the method is presented here
to maintain continuity with the current discussion, but it is by no
means exhaustive (see Refs. 1 and 2 for a detailed description of the
method).

Denoting the state and adjoint by x( s ) 2 Rn and ¸( s ) 2 Rn , re-
spectively, the HBVP of Eqs. (8) and (9) can be written in the form

µ
x 0

¸ 0

¶
= G(x, ¸),

µ
x(0) = x0

x( s ibl) = x̄

¶
(10)

where µ
x( s )

¸( s )

¶
2 R2n

lies in the Hamiltonian phase space or, more simply, the phase space
and x̄ corresponds to a saddle point (x̄, ¯̧ ) of G(x, ¸). The Hamil-
tonian vector � eld can then be written as

G(x, ¸) = A(x, ¸)v = As(x, ¸)vs + Au (x, ¸)vu (11)

where

A(x, ¸) = [As(x, ¸) Au (x, ¸)] 2 R2n £ 2n

As (x, ¸) 2 R2n £ n , Au(x, ¸) 2 R2n £ n

and

v =

µ
vs

vu

¶
2 R2n

It can be shown1,2 that the coordinates vs and vu satisfy the differ-
ential equations

µ
v0

s

v 0
u

¶
= (A ¡ 1 A ¡ A ¡ 1 A 0 )

µ
vs

vu

¶
=

µ
K s K su

K us K u

¶ µ
vs

vu

¶
(12)

where

=

µ
@G
@x

@G
@¸

¶
(13)

and

A ¡ 1(x, ¸) =

µ
A†

s (x, ¸)

A†
u (x, ¸)

¶

A†
s (x, ¸) 2 Rn £ 2n , A†

u (x, ¸) 2 Rn £ 2n

When As (x, ¸) and Au (x, ¸) approximately identify the stable and
unstable components, respectively, of G(x, ¸) over the time inter-
val s 2 [0, s ibl] in a region of interest in the phase space around
(x̄, ¯̧ ), the basis A(x, ¸) is said to be an approximate dichotomic
basis.1,2 For many problems, an approximate dichotomic basis can
be constructed using the eigenvectors of the Jacobian at various
points in the Hamiltonian phase space (see Ref. 2 for details). If an
eigenvector approximate dichotomic basis can be found, then the
completely hypersensitive HBVP of Eqs. (8) and (9) can be solved
via the successive approximation procedure given in the following
algorithm.

Algorithm: Suppose that an approximate dichotomic basis A(x,
¸) has been identi� ed in a region of interest around a saddle point
(x̄, ¯̧ ) of the Hamiltonian vector � eld G(x, ¸). Then the following
successive approximation procedure can be used to solve a HBVP
of the form of Eq. (10):

1) Choose a value for s ibl, a convergence level d and an error
tolerance e (as de� ned in Ref. 2).

2) Make an initial guess of the function vu ( s ) on the interval
s 2 [0, s ibl], for example, vu ( s ) ´ 0.

3) Integrate the system of differential equations
2

4
x 0

¸ 0

v 0
s

3

5 =

µ
As Au

K s K su

¶ µ
vs

vu

¶
(14)

forward from s = 0 to s ibl with the initial conditions

x(0) = x0

¸(0) = ¸0 found from solving A†
u (x0 , ¸0)G(x0, ¸0) = vu (0)

vs(0) = A†
s (x0, ¸0)G(x0 , ¸0) (15)

4) By the use of vs( s ) from the solution of Eq. (14), integrate the
system of differential equations

2

4
x 0

¸ 0

v0
u

3

5 =

µ
As Au

K us K u

¶ µ
vs

vu

¶
(16)
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backward from s = s ibl to 0 with the terminal conditions

x( s ibl) = x̄

¸( s ibl) = ¸ibl found from solving A†
s (x̄, ¸ibl)G(x̄, ¸ibl) = vs( s ibl)

vu ( s ibl) = A†
u(x̄, ¸ibl)G(x̄, ¸ibl) (17)

5) By the use of the value of vu ( s ) from the solution of Eq. (16) in
step 4, repeat steps 3 and 4 until the prespeci� ed convergence level
d and error tolerance e are met (see Ref. 2 for details). If on any
iteration the convergence level d is satis� ed but the error tolerance
e is not satis� ed, increase s ibl and repeat steps 3 and 4. If both the
convergence level d and the error tolerance e are satis� ed, then quit.

Numerical Results
The eigenvector approximate dichotomic basis method is now

applied to the HBVP of Eqs. (8) and (9). Typical values for E and
k E are E = 14,700 m and k E = ¡ 0.00667, respectively. A typical
initial condition for this problem is

h( s = 0) = 10668 m, c ( s = 0) = 0.234 rad (18)

For this problem, an approximate dichotomic basis can be con-
structed using the eigenvectors of the Jacobian of Eq. (8) at the
saddle point

heq = 7865 m, c eq = 0 rad

k h ,eq = 0, k c ,eq = ¡ 1.35313969 (19)

of Eq. (8). Consequently, the approximate dichotomic basis is con-
stant. For this problem, the eigenvalues and eigenvectors are com-
plex. Transforming the eigenvectors to real form, the approximate
dichotomic basis is given as

A(x , k ) ´ A =

2

6664

1.9677 £ 10 ¡ 1 ¡ 9.8045 £ 10 ¡ 1 8.2610 £ 10 ¡ 1 ¡ 5.6352 £ 10 ¡ 1

1.9755 £ 10 ¡ 4 2.9016 £ 10 ¡ 4 3.4422 £ 10 ¡ 4 6.8769 £ 10 ¡ 5

6.7091 £ 10 ¡ 7 ¡ 4.3577 £ 10 ¡ 7 ¡ 1.3966 £ 10 ¡ 7 7.8773 £ 10 ¡ 7

2.2437 £ 10 ¡ 3 3.9983 £ 10 ¡ 4 ¡ 1.2431 £ 10 ¡ 3 ¡ 1.9102 £ 10 ¡ 3

3

7775

where

As =

2

6664

1.9677 £ 10 ¡ 1 ¡ 9.8045 £ 10 ¡ 1

1.9755 £ 10 ¡ 4 2.9016 £ 10 ¡ 4

6.7091 £ 10 ¡ 7 ¡ 4.3577 £ 10 ¡ 7

2.2437 £ 10 ¡ 3 3.9983 £ 10 ¡ 4

3

7775

Au =

2

6664

8.2610 £ 10 ¡ 1 ¡ 5.6352 £ 10 ¡ 1

3.4422 £ 10 ¡ 4 6.8769 £ 10 ¡ 5

¡ 1.3966 £ 10 ¡ 7 7.8773 £ 10 ¡ 7

¡ 1.2431 £ 10 ¡ 3 ¡ 1.9102 £ 10 ¡ 3

3

7775

For the computations presented here, d = 10 ¡ 3 , e = 10 ¡ 3, and
s ibl = 125 s (note that s ibl is a function of d , that is, as d decreases,
s ibl increases).

The results for h and c are shown inFigs. 1 and 2, respectively, for
iterations 1, 2, and 5 (iteration 5 is the converged solution). Similar
results are obtained for the adjoints k h and k c but are not shown. Two
key features of the method are illustrated by the numerical results.
First, it is seen that each of the solution iterates levels off as s ! s ibl.
Consequently, on the time interval s 2 [0, s ibl], the hyper-sensitivity
to the unknown initial adjoints k h( s = 0) and k c ( s = 0) has been
eliminated. Second, it can be seen that the method converges. More-
over, the converged solution meets the both the convergence level
d and the error tolerance e . That the method is successful on a

Fig. 1 Solution iterates of h vs ¿ obtained from applying the eigenvec-
tor approximate dichotomic basis method to the HBVP of Eqs. (8) and
(9) alongside solution obtained from linearizing the trajectory about the
saddle point of Eq. (19).

Fig. 2 Solution iterates of ° vs ¿ obtained from applying the eigenvec-
tor approximate dichotomic basis method to the HBVP of Eqs. (8) and
(9) alongside solution obtained from linearizing the trajectory about the
saddle point of Eq. (19).

relatively complex single timescale problem indicates that the di-
chotomic basis approach may be extendible to more complex prob-
lems, including problems that evolve on multiple timescales.

An important point is that the solution obtained via the approx-
imate dichotomic basis is different from the solution obtained by
linearizing the Hamiltonian dynamics about the equilibrium point
of Eq. (19) and dropping the unstable component of the linearized
Hamiltonian vector � eld. This is veri� ed by looking again at Figs. 1
and 2, which show the linearized solution for h and c , respectively,
alongside the converged solution from the eigenvector approximate
dichotomic basis method (referred to here as the exact solution). The
difference between the linearized solution and the exact solution
arises because the linearized solution lies in the stable eigenspace
of the saddle point whereas the exact solution lies in the stable
manifold of the saddle point. Whereas in the current example this
difference is small, it may be large for other problems.

Conclusions
A recently developed eigenvector approximate dichotomic basis

method for solving hypersensitive optimal control problems has
been applied to a problem inperformance optimization of supersonic
aircraft. Three key results are illustrated. First, although the reduced
Hamiltonian dynamics are unstable and the corresponding HBVP is
completely hypersensitive, the eigenvector approximate dichotomic
basis method eliminates the hypersensitivity on the time interval
of interest. Second, it is shown that the successive approximation
procedure converges to a solution of the reduced HBVP to within
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a speci� ed convergence tolerance. Third, the results indicate that
the dichotomic basis approach may be extendible to problems that
evolve on multiple timescales.
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I. Introduction

T HE usefulness of optimal control is sharply divided between
two distinct classes of dynamic systems, namely, linear systems

and nonlinear systems. For linear systems, the theory is complete in
the sense that given a quadratic cost and closed-loop or feedback,
a guidance law may be determined.1 For nonlinear systems, gener-
ally the best one can do is to determine an open-loop guidance law.
Research efforts have produced many numerical algorithms for an
open-loop solution for such problems using digital computers. The
main disadvantage of these algorithms is that they generally con-
verge slowly and are not suitable for real-time applications. In an
open-loop solution, the control at any time instant is not explicitly
determined by the states of the system at that time instant. It is well
known that a system with an open-loop controller can be sensitive
to noise and external disturbances. In contrast, closed-loop control,
in which the control is a function of the instantaneous states of the
system, is generally robust with respect to such disturbances. Un-
fortunately, only rarely is it feasible to determine the feedback law
for nonlinear systems of any practical signi� cance.1

Over the past four decades, a considerable number of homing mis-
sile guidance laws have been proposed. One of the most widely used
methods is the proportional navigation guidance (PNG) law.2 The
simplicity of the PNG law has been widely recognized. Furthermore,
Ho et al.3 have shown that the conventional PNG law is optimal in

Received 15 September 1998; revision received 1 June 1999; accepted for
publication 3 December 1999. Copyright c° 2000 by the American Institute
of Aeronautics and Astronautics, Inc. All rights reserved.

¤ Ph.D. Candidate, Mechanical Engineering Department, 424 Hafez Av-
enue.

†Associate Professor, Electrical Engineering Department , 424 Hafez Av-
enue; menhaj@cic.aku.ac.ir.

the sense that it drives the miss distance to zero while minimizing
the integral of the square of missile acceleration. Most existing mis-
siles are guided by PNG law; however, the linear-quadratic guidance
rule contains PNG as a particular case for linear state equations, and
most envisioned missile engagements exceed these limits because
of high tangential and normal accelerations.

As compared to numerical or linearized methods for solving
complex optimization problems, in this study a new approach has
been adopted to synthesize nonlinear feedback laws. The motivation
comes from the � eld of fuzzy logic. The basic feature of a fuzzy-
logic-based controller is that the control strategy can be simply ex-
pressed by a set of fuzzy IF–THEN rules that describe the behavior
of controller by employing linguistic terms. From these rules, the
proper control action is then inferred. In addition, fuzzy-logic-based
controllers are relatively easy to develop and simple to implement.

Fuzzy modeling of control systems and fuzzy optimal control
have been studied in the past few years.4 However, we � nd only
a few papers that explicitly consider closed-loop optimal control
in homing missile guidance. In Ref. 5, homing guidance schemes
based on fuzzy logic have been developed for a planar engagement
model. In Ref. 5, two versions of fuzzy guidance schemes have been
proposed, the � rst one using information required for proportional
navigation (PN) and the second one using the information required
for augmented PN (APN). Then the performances of the two fuzzy
guidance schemes, in terms of commanded acceleration pro� les and
the value of the terminal miss distance, have been compared with
both PN and APN.

The purpose of the present Note is to synthesize an optimal
closed-loop guidance law for homing missile against a target in
a planar interception. The analysis is based on the exact nonlinear
equations of motion. Here, exact open-loop optimal control data (not
PN or APN data) are used to generate fuzzy rules. The new method
is then used effectively in a real-time feedback guidance method.
Numerical example demonstrating trajectories obtained by the op-
timal, fuzzy logic guidance (FLG) and PNG solutions are presented
and followed by conclusions.

II. Problem Statement
The geometry used to de� ne the interception problem is shown

in Fig. 1. The XY coordinate system represents an inertial frame,
and the X axis is along the line of sight at t = 0. The target, located
at XT = X0 for t = 0, is moving along a straight line that makes
an angle b with respect to the X axis. The constant-speed missile
is launched at an angle h 0 relative to the X axis, and the velocity
direction h (t ) is changed by controlling the normal acceleration
an (t ). The optimal intercept problem is stated as follows.

Find the normal acceleration history an that minimizes the per-
formance index

J =
1

2

Z l f

t0

a2
n dt (1)

If x = xT ¡ xM and y = yT ¡ YM , then differential constraints be-
come

Çx = VT cos b ¡ VM cos h (2)

Çy = VT sin b ¡ VM sin h (3)

Çh = an / VM (4)

Fig. 1 Missile and target interception geometry.
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