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Timescale Analysis for Nonlinear Dynamical Systems

K. D. Mease,¤ S. Bharadwaj,† and S. Iravanchy‡

University of California, Irvine, California 92697

Insight into the behavior and simpli� ed control of a nonlinear dynamical system can be gained by analyzing the
timescale structure. Near an equilibrium point, the eigenvalues and eigenvectors for the linearized system provide
the necessary information. Nonlinear systems often operate on multiple timescales away from equilibrium, but
there has been no general systematic approachto determine these timescales and the associated geometric structure
of the state space. A timescale analysis method based on Lyapunov exponents and vectors is synthesized, and its
theoretical basis is established. As an initial demonstration the method is applied to an example system, for which
the timescale structure is known by other means, and is shown to yield the correct results.

Introduction

I F a system operates on two or more disparate timescales, there
is an opportunity for decomposing a mathematical model of the

system on the basis of the timescale separation and thus simplify-
ing the analysis and design of the system. Flight guidanceproblems
provideparticularmotivation.Guidanceproblemsare typicallynon-
linear, require reaching a target in � nite time, and often do not have
near-equilibriumor near-periodicsolutions.Guidanceproblems are
frequently formulated as optimal control problems because high
performance is required. Especially for autonomous onboard guid-
ance, simpli� cation of the guidance problem is highly desirable.
There have been a number of successes in simplifying guidance
problems on the basis of timescale separationin the nonlineartrans-
lational dynamics using the singular perturbation approach.1 The
steps in the singular perturbation approach are 1) to express the
equations of motion in singularly perturbed form and 2) to use the
singularperturbationmethod to constructa solution to the guidance
problem as the composite of solutions to reduced-order problems,
one for each timescale.1;2 Whereas the secondstep is systematic and
has a theoretical basis,2 the � rst step has been ad hoc, with a few
exceptions mentioned in the next paragraph, and requires a priori
insight into the timescale structure for success.

Several techniqueshave been proposed for casting the equations
of motion in an appropriate singularly perturbed form. For a given
set of state variables, several authors3¡5 have nondimensionalized
the state variables, by scaling altitude by a characteristic altitude,
time by a characteristictime, etc., therebyidentifyinga small param-
eter and the singularly perturbed structure of the dynamics. Rather
than scaling variables, some researchers6;7 have inserted small pa-
rameters in the equationsof motion to achievea singularlyperturbed
form, thus embedding the original system in a family of systems pa-
rameterizedby the small parameters.For either of these approaches
to be successful, the state variables must have been selected appro-
priately, implying either good fortune or most likely some a priori
knowledge of the timescale structure. Other investigators6;8;9 have
derivedfull or partial state transformationsvia the solutionof partial
differential equations to eliminate slow/fast coupling in the equa-
tions of motion. The derived transformation is from a given set of
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state variables to a new set of state variables,and a priori knowledge
of which subset of the given state variables is primarily responsible
for the fast motion is required. The feature that a pure fast vari-
able should be constant during the slow behavior has also guided
the constructionof appropriate fast variables. Both the scaling and
decoupling approaches can also be found in the general singular
perturbations literature.2

Some fundamental questions arise regarding the timescales of a
nonlinear dynamic system. For a linear time-invariant system or a
nonlinear system operating in the neighborhood of an equilibrium
point, the timescalesare characterizedbyeigenvalues.For a periodic
linear system, or a nonlinear system operating in the neighborhood
of a periodicorbit, the timescalesare characterizedby Floquet expo-
nents. In the analysis and design of nonlinear systems operating in
transient regionsof the state space, that is, away from equilibriumor
periodic solutions, it would be bene� cial to determine the timescale
structure of the dynamics. How should timescales be de� ned? How
can they be computed? If we think of the “dynamic system” as the
physical system we are modeling, are the timescales an inherent
property of the system that would be present in any mathematical
model of the system, independent of the coordinates one uses, or
are the timescales coordinate dependent?

Answers to these questions are developed in this paper, drawing
heavilyfrom the foundationslaid bymathematicians,in theareanow
called dynamical systems, starting with the work of Lyapunov.10

Some other key contributorsare Perron, Hadamard,Oseledec,11 and
Barreira and Pesin.12 Our work also draws from the more applied
mathematics of Lorenz,13 Greene and Kim,14 Goldhirsch et al.,15

and Lam.16 The contribution of the present paper is to extract and
adapt results from dynamicalsystems theory to the timescale analy-
sis of multiple timescale guidance-typeproblems. “Guidance-type”
refers to the mathematical features stated in the � rst paragraph;our
results would be applicable in other areas with problems with the
same features. There are three steps in reaching our goal: 1) re-
solving theoreticaland practical issues in determining the timescale
structure in the linearized dynamics about trajectories, 2) resolv-
ing the theoretical and practical issues in determining the timescale
structure of the nonlinear system from that of the linearizeddynam-
ics, and 3) establishing effective computation methods. This paper
primarily addresses the � rst step and includes results from several
conference papers17¡19 and a dissertation.20

Lyapunov10 introduced characteristic exponents, now called
Lyapunov exponents, as a general means of determining the
timescales and stability of nonlinear systems. Under certain hy-
potheses, Oseledec11 showed that the Lyapunov exponents de� ne a
geometric structure associated with the linearized dynamics along
a trajectory of the nonlinear system. Barreira and Pesin12 devel-
oped a theory for translating the linear structure to nonlinear struc-
ture, generalizing the stable and unstable manifold theorems for
equilibria to trajectories, building on the earlier work of Perron
and Hadamard. There is an extensive literature on Lyapunov expo-
nents in mathematics (in particular, dynamical systems), physics,
and numerous application areas, much of which concerns chaotic
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attractors. With an eye toward model decomposition in the spirit
of boundary-layer-typesingular perturbations, we are interested in
not only the exponents but also the Lyapunov vectors. Together the
Lyapunov exponents and vectors characterize quantitativelyhow a
sphere of initial states propagates into an ellipsoid of � nal states,
according to the linearized dynamics along a trajectory of a dy-
namic system. Computing the Lyapunov exponents and vectors for
trajectories spanning the region of interest in the state space pro-
videsof means of determiningthe timescalestructure for the region;
the Lyapunov vectors in particular indicate appropriatecoordinates
for decomposing the system. The Lyapunov vectors have received
far less attention than the Lyapunov exponents. Lorenz13 obtained
the Lyapunov exponents and vectors via a singular value decom-
position, which is the approach we use in this paper. Greene and
Kim14 and Goldhirsch et al.15 derived evolution equations for the
Lyapunov exponents and vectors and investigated their asymptotic
properties. These investigators13¡15 used the Lyapunov exponents
and vectors to determine the dimension and structure of a chaotic
attractor. Abarbanel et al.21 use � nite time Lyapunov exponents to
characterize local system behavior on a chaotic attractor. Vastano
and Moser22 used Lyapunov vectors and kinematic eigenvalues,
quantities related to the Lyapunov exponents, to understand � uid
� ow mechanisms. Wiesel has contributed to the theory of � nite-
time Lyapunov exponents23 and applied them to trajectory tracking
law design.24

This paper has some tutorial content for the purpose of making
the mathematicswe are drawing from understandableto more read-
ers. Whereas linear algebra and vector spaces provide the means
of geometrically characterizing linear systems, differential geom-
etry provides the means of geometrically characterizing nonlinear
systems. The use of differential geometry in this paper is thus un-
avoidable, but we have attempted to write the paper in a way that
does not require prior knowledge of differential geometry.The geo-
metric structure of a two-timescale system is introduced in the next
section using a simple example in which the geometry can be vi-
sualized as a distorted version of the familiar geometry of a linear
system. This concrete example of the timescale-inducedgeometric
structure of a nonlinear system clari� es the objective of the subse-
quent developments.

Nonlinear Two-Timescale System Geometry:
Motivating Example

Consider two different state variable representationsof the same
dynamic system. In terms of the state variables w1 and w2, the
dynamics are linear, time invariant (LTI):

Pw D A w D
µ

¡1 0

0 ¡10

¶
w (1)

In terms of the alternative state variables x1 and x2, the dynamics
are nonlinear, time invariant (NTI):

Px1 D ¡x1 ¡ a.x1 C 19x2/.x1 C x2/ ¡ 18a2.x1 C x2/3

Px2 D ¡10x2 ¡ 2a.4x1 ¡ 5x2/.x1 C x2/ C 18a2.x1 C x2/3 (2)

The nonlinear coordinate transformation that relates these two rep-
resentations is w1 D x1 ¡ a.x1 C x2/2 and w2 D x2 C a.x1 C x2/2.
The LTI system has a two-timescale structure because the eigen-
values of A are ¡1 and ¡10, and the structure is uniform be-
cause the system is LTI. The nonlinear system will have uniform
two-timescale structure, if the state transformation does not signi-
� cantly modify the timescales. In the .w1; w2/ space, the two-
timescale behavior is evident. The general solution has the form
w.t/ D w2.0/e¡10t v1 C w1.0/e¡t v2, where w D .w1; w2/T is the state
vector and v1 D .0; 1/T and v2 D .1; 0/T are the eigenvectors of A.
At each point in the space, the vertical direction, v1 , is the direction
of fast motion evolvingat the rate e¡10t , and the horizontaldirection,
v2, is the direction of slow motion evolving at the rate e¡t .

FromFenichel’s geometricperspective,25 the trajectoriesof a two-
timescalesystem are organizedin the state space by a slow manifold
and a family of fast manifolds. In the .w1; w2/ space (Fig. 1a), the
slow manifold is the w1 axis and the vertical line througheach point

on the slow manifold is a fast manifold. Trajectories from initial
pointsoff the slowmanifoldproceedquicklyin theverticaldirection,
that is, along the fast manifold through the initial point, toward the
slow manifold at the fast rate e¡10t and subsequentlyproceed along
the slow manifold at the slower rate e¡t . This description is only
approximate for � nite timescale separation because motion in the
slow directiondoes occur during the approach to the slow manifold,
and thus, the trajectory does not exactly follow the fast manifold on
which it begins. At each point in the state space, the timescales for
the LTI system are given by the eigenvaluesof the matrix A, and the
fast and slow directionsof the motion are given by the eigenvectors
of the matrix A.

The trajectoriesof the NTI system are shown in the .x1, x2) space
in Fig. 1b for a D 0:01. Note that the two-timescale structure is still
present, but the slow and fast manifolds are now curved rather than
straight. In a suf� ciently small neighborhood of the equilibrium
point, the timescale structure can be determined from the eigen-
values and eigenvectors for the linearized dynamics. In guidance
problems, however, our interest is typically in a compact transient
region X , the operating region, such as shown in Fig. 1b. For our
example NTI system, there is two-timescale structure in this region,
and thus the potential exists for simpli� ed analysis and design.

Our ultimate goal is to determine state variables that re� ect the
timescalestructureandallow thedynamicsto bedecomposedon this
basis. In ourcontrivedexample,thegoal is to begiventhex represen-
tation and determine the w representation.The .w1; w2/ coordinate
curves are superimposed in Fig. 1b to indicate the information we
desire; viewed in the x frame, .w1; w2/ are curvilinear coordinates.
The steps we achieve in this paper are to determine the character-
istic numbers (the Lyapunov exponents) that give the timescales
and to determine the correspondingvectors (the Lyapunov vectors)
that give at each point in the region X the directions of the de-
sired curvilinear coordinates. The Lyapunov vectors are shown in
Fig. 1b at three points in the region X . The bold vectors are the
Lyapunov vectors, one arrowhead for slow and two for fast, and
give the correct directions. The shorter, lighter vectors are the lo-
cal eigenvectors; they do not uniformly give the desired directions.
Note that the equivalentLTI systemwas employedin thismotivating
example as a means of more simply introducing the two-timescale
structure. Our approach does not require that the dynamics in the
desired state variables be linear, as appropriate because in general
a nonlinear dynamic system cannot be transformed into a linear
dynamic system.

In the remainder of the paper we will synthesize and justify a
method of timescale analysis based on � nite time Lyapunov expo-
nents and vectors. After establishing our assumptions and termi-
nology,we de� ne and discuss the timescale information that can be
obtainedat each point in the state space by integratingthe linearized
dynamics along the trajectory of the nonlinear system through that
point. In general the timescale information is metric and coordi-
nate dependent; we treat both the Euclidean metric and the general
Riemannian metric, as well as the effect of coordinate transforma-
tions. The timescale information characterizes the average expo-
nential behavior in the linearizeddynamics over a time interval. We
consider the properties of the timescale information in the in� nite
time limit, in particular the convergence and metric independence.
We next consider the convergencerate with regard to computational
feasibility. Convergence requires the presence of two or more suf-
� ciently disparate timescales. This is a fortunate result that means
that if multiple timescale behavior exists, then computing the cor-
respondingtimescale information is feasible.Finally a procedure is
outlined and applied to the example of this section.

Terminology, Assumptions, and Evolution Equations
Our objectiveis to characterizethe timescalestructureof a system

whosestatex evolvesin the spaceRm accordingto theNTI dynamics

Px D f .x/ (3)

where Px is the time derivative of the state and f is a smooth func-
tion of the state. Equation (3) is said to de� ne a vector � eld on
the state space. Although our work is motivated by � ight guidance
problems, for which one would expect a control-dependentvector



320 MEASE, BHARADWAJ, AND IRAVANCHY

a)

b)

Fig. 1 State portraits with two-timescale structure for a) an LTI system and b) a related NTI system.

� eld, Px D f.x; u/ with u the vector of control variables, we do not
explicitly consider control dependence. Our analysis of Px D f .x/ is
relevant for a controlledsystem in any of the followingcases:1) u is
determined by a feedback law and f .x/ represents the closed-loop
dynamics, 2) f .x/ is the open-loop dynamics and we do not plan
to alter the timescale structure by control activity, or 3) Px D f .x/ is
the Hamiltonian system for an optimally controlled system, with x
being the combined state and costate vector.

Unlike an LTI system, the timescale structure of a nonlinear sys-
tem can be different in different regions of the state space. Thus,
we focus on a compact connected set X , a subset of the state
space Rm , that is an operating region whose timescale structure
we wish to determine. The solution, or orbit, evolving from the
initial point x 2 X , is denoted by x.t/ D Á.t; x/, where Á satis� es
@Á.t; x/=@t D f [Á.t; x/], for each value of t under consideration,
and Á.0; x/ D x. [We use Á.t; x/ rather than x.t/ because we want
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Fig. 2 Evolution of a circle to an ellipse.

to use x for the initial state.] We assume that the orbit exists at least
as long as it remains within X . For each x 2 X , there is a maxi-
mal time interval T .x/ D [ t

¯
.x/; Nt.x/] that includes zero, such that

Á.t ; x/ 2 X for all t 2 T .x/. The minimumtime to reach transversely
the boundary of X from x is Nt.x/ for forward time propagation and
t.x/ for backward time propagation. If x is on the boundary of X ,
then one of these times can be zero. If the orbit never leaves X
in forward time, then Nt.x/ is taken to be in� nite and similarly for
backward time. If Nt.x/ D 1 for all x 2 X , then X is a positively in-
variant set for the dynamics under consideration; if t.x/ D ¡1 for
all x 2 X , then X is a negatively invariant set; if T .x/ D .¡1; 1/
for all x 2 X , then X is invariant.

The associated linear dynamic system is
@v
@t

D F [Á.t; x/]v (4)

where F D @ f=@x and v.t; x/, an m-dimensional vector, can be in-
terpreted as a small perturbation in x that evolves approximately
according to the linear dynamics, or as a tangent vector of any size
that evolves exactly according to the linear dynamics. In this paper,
we shall develop a methodology for computing and interpreting the
timescale structure for the linear dynamic system associated with
orbit segmentscovering X . The next step,which is beyondthe scope
of this paper, is to transfer the linear timescale structure to the non-
linear system, for example,using the linearresults to determineslow
and fast manifolds in X . The rigorous theory supporting this step is
given by Barreira and Pesin.12

The solution to Eq. (4) can be expressed as v.t; x/ D
8.t; x/v.0; x/, where 8 is the transition matrix. 8 satis� es Eq. (4),
that is, @8=@t D F[Á.t ; x/]8; also, 8.0; x/ D I , where I is the
m £ m identitymatrix.The dependenceof v on x is due to the depen-
dence of F on Á.t ; x/, that is, x indicates the initial point of the orbit
with respect to which the dynamics in Eq. (4) are linearized.8 is re-
lated to the nonlinearsolutionoperatorÁ by 8.t ; x/ D @Á.t ; x/=@x.
Interpreting v as a tangent vector, the system composed of Eqs. (3)
and (4) describes the evolution of a point with coordinates .x; v/
in a 2m-dimensional space T X referred to as the tangent bundle.
Spivak26 is a referencefor thedifferentialgeometricconceptswe use
here.For each pointx 2 X , there is an associatedtangentspace Tx X ,
the space of all possible vectors tangent to orbits passing through
x. Note that the vector Px D f.x/ is just one of these possible tan-
gent vectors. The tangent bundle is the union of the tangent spaces,
T X D

S
x 2 X Tx X . Focusing on a state space orbit Á.t ; x/ pass-

ing through x at t D 0, for v.0; x/ 2 Tx X , we have v.t ; x/ 2 TÁ.t;x/ X ,
where v.t ; x/ D 8.t; x/v.0; x/; in words, the vector v.0; x/ in the
tangent space at x evolves to the vector v.t; x/ in the tangent space

at Á.t; x/. See Fig. 2 for the case m D 2, where T is the propaga-
tion time and the vectors l1 , l2 , n1 , and n2 will be de� ned later. If
we have k linearly independent vector � elds f1.x/; : : : ; fk .x/ de-
� ned on X that vary smoothly with x, we can de� ne at each x
a k-dimensionalsubspace3.x/ D spanf f1.x/; : : : ; fk .x/g. If k D m,
then 3.x/ D Tx X , and for each x, the vector � elds providea basis for
Tx X . If k < m, then 3.x/ is a subspaceof Tx X , and 3 D [x 2 X 3.x/
is called a subbundle of the tangent bundle T X . If a collection of
r · m subspaces of Tx X can be ordered such that 31.x/ ½ 32.x/
½¢ ¢ ¢½ 3r .x/ D Tx X , then this collectionde� nesa � ltrationofTx X .
Note that the subspaces of the � ltration satisfy for i D 1; : : : ; r ¡ 1
the conditionsdim3i .x/ < dim3i C 1.x/, and 3i .x/ is a subspaceof
3i C 1.x/.

The simplest case to conceptualize is for an equilibrium point,
that is, x is a point xeq such that f .xeq/ D 0. Then the “orbit”
is just the equilibrium point, that is, Á.t; xeq/ D xeq for all t and
T .xeq/ D .¡1; 1/. If we choose our state-space set X to be
this single point, then for any tangent vector v.0; xeq/ 2 Txeq X we
only need to consider this tangent space because v.t ; x/ 2 Txeq X
for all t. When e1; : : : ; em denote the generalized (real) eigen-
vectors of F.xeq/, a � ltration of Txeq X can be de� ned by
31 D spanfe1g; 32 D spanfe1; e2g; : : : ; 3m D spanfe1; e2; : : : ; emg.
Alternatively one could apply Gram–Schmidt orthogonalizationto
the eigenvectors,commencing with e1 and working up in index and
use the resulting orthogonal basis to de� ne the same � ltration.

We use G to de� ne the norm by which the length of a vector is
measured. G, in the most general case we consider, is an m £ m
matrix-valued smooth bounded function on X that is symmetric
and positive de� nite for all x 2 X . In other words, G de� nes a
Riemannian metric on X . The associated inner product for vec-
tors u; v 2 Tx X is hu; viG.x/ D uT G.x/v. The length of v 2 Tx X is
kvkG.x/ D hv; vi1=2

G.x/. The simplest case is when G D I , the constant
identity matrix, which corresponds to the Euclidean metric.

Singular Value Decomposition of Transition Matrix
The transition matrix 8.t; x/, for any x 2 X and t 2 T .x/, has a

singular value decomposition27 (SVD)

8 D N6LT (5)

where N and L are m £ m orthogonal matrices with respect to the
Euclidean metric and 6 is a diagonal matrix with positive diagonal
elements called the singular values ¾i , i D 1; : : : ; m . Although the
results of this paper can be adapted to the case of nondistinctsingu-
lar values, to simplify the presentation we assume that the singular
valuesare distinct.We assume the ordering0 < ¾1 < ¾2 < ¢ ¢ ¢ < ¾m .
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Because the SVD of 8.t; x/ plays a central role, we discuss its con-
struction and geometric interpretation, suppressing the arguments
of 8 to simplify the notation.Let °i , i D 1; : : : ; m denote the eigen-
values of 8T 8. Because 8 is square and nonsingular, 8T 8 is a
symmetric positive de� nite matrix, and all its eigenvalues are pos-
itive. The eigenvalues can have multiplicity greater than one, but
consistent with our assumption of distinct singular values, we as-
sume distinct eigenvalues. De� ne the eigenspace associated with
the eigenvalue °i as the nonzero linear subspace Ui ½ Rm such that
8T 8v D °i v for all vectors v 2 Ui (Ref. 28). There are m uniquely
de� ned one-dimensional eigenspaces under the assumption of dis-
tinct eigenvalues. Each eigenspace can be written as the span of a
unit length vector, and we use the term eigenvector to refer to this
vector. The eigenvectors are, thus, uniquely de� ned up to multipli-
cation by §1. Because of the symmetry of 8T 8, the eigenvectors
are mutually orthogonal.The eigenvaluesand correspondingeigen-
vectors can always be ordered such that °1 < °2 < ¢ ¢ ¢ < °m , and
this ordering is assumed in the remainder of the paper.

Next de� ne N D 8L6¡1, where 6 is the diagonal matrix with
diagonal elements ¾i D C

p
°i , i D 1; : : : ; m , and L is the matrix

whose columns li ; i D 1; : : : ; m, comprise a set of eigenvectors for
8T 8. Because the vectors li ; i D 1; : : : ; m, constitute an orthonor-
mal basis for Rm , the matrix L is orthogonal, that is, LT L D I . It can
be shown that N is also orthogonal(N T N D I ) and that the column
vectors of N , denoted by ni , i D 1; : : : ; m , are the eigenvectors of
88T , that is, N satis� es 88T N D N 62. RearrangingN D 8L6¡1,
we obtain the SVD of the transition matrix 8 D N6L T .

The transitionmatrix, because it is square and invertible,also has
the polar decomposition15;27

8 D QS (6)

where S is the symmetricpositivede� nitem £ m matrix that satis� es
S2 D 8T 8 and Q D 8S¡1 . This follows directly from the SVD. We
have8 D N .LT L/6LT D .N L T /.L6LT / D QS. It can be shown
that the matrix Q D N LT is a rotation matrix.

Timescale Information
Finite Time Lyapunov Exponents and Vectors

A sphere of initial conditions for v 2 Tx X , propagated along
an orbit of the nonlinear system according to the linearized dy-
namics, evolves into an ellipsoid.11 By analyzing this behav-
ior, one can characterize the timescales of the nonlinear sys-
tem and the corresponding geometric structure.13¡15;23;29 A vec-
tor v 2 Tx X , propagated for T units of time along the orbit
Á.t ; x/, evolves to the vector vT D 8.T; x/v. The Euclidean length
of the initial vector is kvk D .vT v/1=2 and of the � nal vector is
kvT k D k8.T; x/vk D .vT 8T 8v/1=2 . Given the positivede� niteness
of 8T 8, it is clear that a unit sphere of initial conditions, expressed
as the set S.x/ D fv 2 Tx X : kvk D 1g, propagates to an ellipsoid
of � nal conditions S[Á.T ; x/] D fvT 2 TÁ.T ;x/ X : vT D 8.T; x/v,
for some v 2 S.x/g. The same statement can be made for a non-
Euclidean metric, only in this case the “sphere” is de� ned by the
property kvkG D [vT G.x/v]1=2 D 1 and the “ellipsoid” is adapted
similarly.

The ratio of the lengths of an initial nonzero vector and its corre-
sponding � nal vector, ¾ D kvT kG[Á.T ;x/]=kvkG.x/, is a multiplier that
characterizes the net expansion (growth), if ¾ > 1, or contraction,
if ¾ < 1, of the vector over the time interval .0; T /. The square of
this multiplier is

¾ 2.T ; x; v/ D
kvT k2

G[Á.T ;x/]

kvk2
G.x/

D
k8.T ; x/vk2

G[Á.T ;x/]

kvk2
G.x/

D vT 8T .T ; x/G[Á.T; x/]8.T; x/v
vT G.x/v

(7)

[the Rayleigh quotient in linear algebra (see Ref. 27)].
In the case of the Euclideanmetric, G ´ I , the information in the

SVD of the transition matrix 8 allows us to characterize the multi-
pliersfor all of thevectorsin the tangentspaceTx X . Postmultiplying
both sides of 8.T; x/ D N6L T by L and using the orthogonality
property L T L D I , we have

8L D N6 (8)

This equation allows us to interpret Fig. 2 and more generally
to characterize the propagation of the (hyper)sphere into the (hy-
per)ellipsoid in a space of any � nite dimension. Equation (8) indi-
cates that the column vectors of L evolve into the directions given
by the column vectors of N . The column vectors of L should be
viewed as vectors in Tx X , whereas the column vectors of N should
be viewed as vectors in TÁ.T ;x/ X . The diagonalelements,denotedby
¾i , of 6 determine the amount of expansion or contraction. This is
seen clearly if we write Eq. (8) in the form 8li D ¾i ni , i D 1; : : : ; m.
The vectorsni , i D 1; : : : ; m, are the directionsof the principal axes
of the ellipsoid to which the sphere of initial conditionshas evolved.
The vectors li , i D 1; : : : ; m, are the vectors in Tx X that evolve
into the principal axes of the ellipsoid. The ¾i , i D 1; : : : ; m , are
the lengths of the principal semi-axes in the case when the initial
sphere has unit radius. When an arbitrary initial vector is repre-
sented using the orthonormal basis provided by the column vectors
of L by v D c1l1 C ¢ ¢ ¢ C cm lm and 8.T; x/li D ¾i ni , or equivalently
8.T; x/L D N6 , is used the corresponding� nal vector is

vT D
mX

i D 1

ci ¾i ni D N6c

where c D .c1; : : : ; cm / is the coordinate vector for v in the basis
composed of the column vectors of L .

We mention, but do not consider in this paper, the alternative fac-
torization8.T; x/ D Q R, where Q is an orthogonalmatrix [distinct
from that in Eq. (6)] and R is upper triangular,29;30 which offers an-
other useful geometric interpretation involving the propagation of
parallelepipedsand thegrowth/decayratesfor theenclosedvolumes.

Given sets S1 and S2 with S1 ½ S2 , the notation S2nS1 refers to
the set containing all of the elements in S2 except for those that are
also elements of S1; in this sense, it is S2 minus S1 . For example, if
S2 contains all of the points in a plane and S1 contains the points of
one line in this plane, then S2nS1 is the plane with the line of points
extracted.Note that S2 is still two-dimensional in this example.

Proposition 1: Euclidean Metric Case, G D I . When the SVD
of the transition matrix 8.T ; x/ D N6LT has m distinct singular
values, the singular values de� ne a � ltration of nested subspacesof
Tx X

f0g D L0 ½ L1 ½ L2 ½ ¢ ¢ ¢ ½ Lm D Tx X (9)

by the conditions ¾.v/ D ¾1 for all v 2 L1nL0 and for i D 2; : : : ; m,
¾i ¡ 1 < ¾ .v/ · ¾i for all v 2 L i nL i ¡ 1. The subspaces can be repre-
sented in terms of the column vectors of L , the matrix factor in the
SVD, as

L1 D spanfl1g; L2 D spanfl1; l2g; : : : ; Lm D spanfl1; : : : ; lm g
(10)

[The idea that the multipliers de� ne a � ltration is due to Oseledec11

(also see Refs. 12 and 31)].
Proof: When an arbitrary initial vector is represented by

v D c1l1 C ¢ ¢ ¢ C cm lm D Lc, the squared multiplier is

¾ 2 D cT 62c
cT c

D
mX

i D 1

Oc2
i ¾ 2

i (11)

where Oc2
i D c2

i =.c2
1 C ¢ ¢ ¢ C c2

m /. Because

mX

i D 1

Oc2
i D 1; Oc2

i ¸ 0; i D 1; : : : ; m

¾ 2 is a convex combination of the squared singular values of
8.T; x/. With no additionalconstraintson Oc2

i , i D 1; : : : ; m, we have
¾ 2

1 · ¾ 2.v/ · ¾ 2
m , or equivalently ¾1 · ¾ .v/ · ¾m , for any nonzero

vector v. For the moment, de� ne the L i subspaces, i D 1; : : : ; m,
as in Eq. (10). If v 2 L1, then Oc2

2 D ¢ ¢ ¢ D Oc2
m D 0 and Oc2

1 D 1. Thus,
Oc D .1; 0; : : : ; 0/ is the only possibility; the initial vector v D c1l1 is
mapped to the � nal vector vT D c1¾1n1 and the value of ¾ is ¾1 . If
v 2 L2nL1, then Oc2

3 D ¢ ¢ ¢ D Oc2
m D 0, Oc2 6D 0, and ¾ 2 D Oc2

1¾ 2
1 C Oc2

2¾ 2
2 ,

with Oc2
1 C Oc2

2 D 1, is a convex combination. Thus, ¾ 2 is restricted to
the interval ¾ 2

1 < ¾ 2 · ¾ 2
2 . Note that . Oc1; Oc2/ D .1; 0/ is not allowed
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because it corresponds to v D Oc2
1l1 C Oc2

2 l2 being in L1 . When contin-
ued in this manner, the proposition is proved. In particular the L i

subspacescanbede� nedby themultipliersrather thanby thecolumn
vectors of L. The column vectors of L are just one basis that can be
used to represent the subspaces in the � ltration. This basis is distin-
guished by being orthonormal. ¤

Consider the propagation of tangent vectors in the reverse direc-
tion from x to Á.¡T; x/. The transition matrix for this mapping is
8.¡T; x/, and its SVD is 8.¡T ; x/ D N ¡6¡.L¡/T . The factors
N ¡; 6¡, and L¡ are different from those for the forward matrix
8.T; x/. In the backward time case, we assume the singular val-
ues are distinct and ordered as ¾¡

1 > ¢ ¢ ¢ > ¾ ¡
m . The singular values

de� ne a � ltration

Tx X D L¡
1 ¾ L¡

2 ¾ : : : ¾ L¡
m ¾ L¡

m C 1 D f0g (12)

in that ¾¡.v/ D ¾ ¡
m for all v 2 L¡

m nL¡
m C 1 and for i D 1; : : : ; m ¡ 1,

¾ ¡
i ¸ ¾ .v/ > ¾ ¡

i C 1 for all v 2 L¡
i nL¡

i C 1. The multiplier ¾ ¡.v/ here
is for backward time propagation,meaning integratingEqs. (3) and
(4) from an initial condition .x; v/ at t D 0 to t D ¡T . The subspaces
can be represented in terms of the column vectors of L¡ as

L¡
1 D span

©
l¡1 ; : : : ; l¡m

ª
; : : : ;

L¡
m ¡ 1 D span

©
l¡m ¡ 1; l¡

m

ª
; L¡

m D span
©
l¡
m

ª
(13)

We can also determine L¡ by forward integration by starting at the
point Á.¡T ; x/, computing 8[T ; Á.¡T; x/], and then performing
the SVD 8 D N6LT . It follows that L¡ D N , that is, L¡ for back-
ward propagation is equal to N for forward propagation over the
same orbit segment.

Because our timescale information concerns how the lengths of
vectors change, it is in general dependent on how the length of a
vector is measured, that is, it is metric dependent. To achieve con-
sistency in the timescale information under a state variable trans-
formation, the metric must also be transformed such that the length
of a given vector is the same for either state variable representation.
We will describe later the circumstancesunder which the timescale
information is metric independent. Consider a smooth, invertible
state variable transformationx D h.z/ and let H .z/ D @h=@z. It fol-
lows that the pair .x; v/, the coordinate representation of a point in
the tangent bundle, transforms to .z; u/ where v D H .z/u. The in-
verse state transformationis denotedby z D h¡1.x/. In the following
we label variables with a superscriptx or z to denote the coordinate
system to which they pertain.

Proposition 2(a): Effect of State/Metric Transformation. If the
metric

G.z/ D H T .z/H .z/ (14)

is used in the .z; u/ formulation, the timescale information, the
triplet .6; L x ; N x /, obtained in the .x; v/ formulation using the
Euclidean metric transforms to .6; L z; N z/, where L x D H .z/L z

and N x D H .zT /N z , with zT D h¡1[Á.T; x/], and the singularvalues
are invariantunder the transformation.L z and N z are G orthogonal,
meaning that they satisfy the relations .L z/T G.z/L z D I and
.N z/T G.zT /N z D I .

Proof: The column vectors of L x and N x are vectors in Tx X
and TÁ.T ;x/ X , respectively. The appropriate transformations32 are,
thus, L x D H .z/L z and N x D H .zT /N z . The G orthogonalityof the
transformed matrices is veri� ed by

.L z/T G.z/L z D .H ¡1L x /T H T H H ¡1 L x D .L x /T L x D I (15)

and similarly for N z . The squared multiplier in terms of the trans-
formed vector u and the metric G is

¾ 2 D
kuT k2

G

kuk2
G

D
k8z.T ; x/uk2

G

kuk2
G

D uT .8z/T G.zT /8zu
uT G.z/u

(16)

The transition matrix 8x transforms to 8z D H ¡1.zT /8x H .z/. Us-
ing the SVD for 8x yields 8z D N z6.L z/T G.z/. Using this result

and u D L zc, where c is the coordinate vector for u in the L z basis,
we obtain

¾ 2 D uT .8z/T G.zT /8zu
uT G.z/u

D cT 62c
cT c

D
mX

i D 1

Oc2
i ¾ 2

i (17)

where Oc2
i D c2

i =.c2
1 C ¢ ¢ ¢ C c2

m / and ci ; i D 1; : : : ; m are the compo-
nents of c. The rest of the proof proceeds just as the one for the
Euclidean case. ¤

As in the x representation,we have 8z L z D N z6. Because a � l-
tration can be de� ned by the characteristic multipliers alone as in
proposition 1, it follows that if the multipliers are the same for two
representationsof the same dynamicsystem, then the corresponding
� ltrations are the same. The difference introduced by the transfor-
mation from .x; v/ to .z; u/ is that now the � ltration is represented
using the column vectors of L z rather than those of L x and the col-
umn vectorsof L z areorthonormalwith respectto the non-Euclidean
metric G.

Proposition 2b: For a dynamic system Pz D f z.z/ and a non-
Euclidean metric G.z/, the timescale information .6; L z; N z/ can
be obtained by 1) factoring G.z/ D H T .z/H .z/, 2) performing an
SVD of the matrix H .zT /8z H ¡1.z/ D N6LT , and 3) computing
L z D H ¡1.z/L and N z D H ¡1.zT /N .

This proposition follows easily from proposition 2a, and so we
do not provide the proof. Note that in proposition2a we start with a
coordinate transformation and specify the metric required for con-
sistency in the timescale information. In proposition 2b, we start
with a non-Euclideanmetric and provide a means of computing the
timescale information. If the metric G has arisen from a coordinate
transformation, then the matrix H comes from this transformation;
otherwise H can be any square root of G.

De� nition 1: In the Euclidean case, the numbers

¹i .T; x/ D .1=T / ¾i .T; x/; i D 1; : : : ; m (18)

associated with the singular values ¾i .T; x/, i D 1; : : : ; m, of a
transition matrix 8.T; x/ are called the � nite-time Lyapunov
exponents.21;23 They are the exponential rates associated with the
principal axes of the ellipsoidand de� ne boundarieswithin the con-
tinuous range of exponential rates at which the lengths of tangent
vectorschange (refer to Proposition1). The columnvectors li .T; x/,
i D 1; : : : ; m, of the orthogonal matrix L of the SVD for 8.T; x/
are called the � nite-time Lyapunov vectors. In the non-Euclidean
case, we use the same terminology for the timescale information
described in propositions2a and 2b.

De� nition 2: The spectrum11 of 8.T; x/ is Sp.T; x/ D
f¹i .T; x/; i D 1; : : : ; mg, that is, the set of Lyapunov exponents.

Thus far we have characterized the timescale information at one
point in the region X . The timescale information is dependent on
T and x. In principle, we could compute the timescale information
at everypoint in X and therebydeterminethe timescalestructurefor
the entire region X . If the timescale properties are approximately
uniform on X , then the Lyapunov exponents will not change much
with x and T ; on the other hand, the column vectors of L and N
will in general rotate as x varies. Greene and Kim14 and Wiesel33

have derived differential equations for propagating L and N along
an orbit; these could be used to propagate L determined at one
x to other points on the orbit through x and similarly for N . As
noted, the timescale structuredetermined for X is dependenton the
propagation time T . There are cases, however, where the timescale
structure approaches a limit as T is increased; these are discussed
later.

Kinematic Eigenvalues
In the preceding subsection, we characterized the average dy-

namic behavior over a time interval by analyzing the transition ma-
trix. In this subsection, we introduce a differential equation that
allows us to identify the functions of time whose averages are the
� nite time Lyapunovexponentsand to identify a distinguishedbasis
of solutions with regard to diagonalizingthe linearizeddynamics, a
basis that is related to the Lyapunov vectors.

Consider the simple case of a scalar nonlinearequation Px D f .x/
and the associated linear dynamics Pv D F[Á.t ; x/]v for an orbit
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Á.t ; x/. Let F[Á.t; x/] be denotedby ½.t/, suppressingthe x depen-
dence to simplify the appearance.We refer to ½.t/ as the normalized
instantaneousrate, in that it is equal to Pv=v. The transition “matrix”
(a scalar in this case) is

8.t/ D exp

µ Z t

0

½.¿ / d¿

¶

For the time interval T , we de� ne the characteristic exponent by

N½ D 1
T

Z T

0

½.¿/ d¿

the averagevalue of ½ over the interval. If ½ is constant, then ½ is the
traditional eigenvalueand N½ D ½ . In the case of a nonconstant½.t/,
we still have v.T / D e N½T v.0/ so that N½ is the exponential rate that
characterizesthe averagebehaviorof v over the intervalT , although
thebehavioris not in generalexponential,that is,v.t/ D e N½t v.0/ does
not hold in general for all t 2 .0; T /.

Now consider the general m-dimensional case. To take the view-
point of the preceding paragraph, the notion of the normalized in-
stantaneous rate must be generalized. We write v.t/ D kv.t/kG e.t/,
where e.t/ D v.t/=kv.t/kG is the unit vector in the direction of v.t/.
Because v.t/ satis� es the equation Pv D F[Á.t ; x/]v, it follows that
the differential equationsatis� ed by e.t/ is, replacing F[Á.t ; x/] by
F.t/ to simplify the notation,

Pe D [F .t/ ¡ ½.t/I ]e (19)

where

½.t/ D 1
kv.t/k

d

dt
kv.t/k D 1

2
eT [F T .t/G C PG C G F .t/]e (20)

is the normalized instantaneous rate of change of the magni-
tude of v. The quadratic form for ½.t/ is derived by differentiat-
ing kv.t/kG D [vT .t/Gv.t/]1=2. For the Euclidean metric we have
½.t/ D 0:5eT [F T .t/ C F.t/]e. When ½.t/I is subtracted from F.t/
in Eq. (19), e.t/ tracks the direction of v while maintaining unit
length. The function ½.t/ depends on the vector v.t/, or equiva-
lently the vector e.t/, under consideration, although our notation
does not indicate this dependence.

IntegratingEq. (19) alonga trajectoryof the nonlinearsystem and
simultaneouslycomputing½ using the quadraticform in Eq. (20) al-
lowsone to monitor theevolutionof thedirection,and the localexpo-
nentialrateof changeof themagnitude,of any initialvectorv 2 Tx X .
For any set of linearly independentinitial vectors,v1; : : : ; vm , which
are subsequentlynormalized to unit length initial vectors, Eqs. (19)
and (20) generate a time-varying basis e1.t/; : : : ; em .t/ and corre-
sponding instantaneousrates ½1.t/; : : : ; ½m .t/. Let D.t/ denote the
diagonalmatrix with ½1.t/; : : : ; ½m .t/ as diagonal elements, and let
E.t/ denote the matrix with columns e1.t/; : : : ; em.t/.

From the results of the preceding subsection, we know that
for the timescale information (6, L , N ), the initial condition
E.0/ D L will evolve to E.T / D N . Observe that Eq. (20) implies
@=@tkv.t/kG D ½.t/kv.t/kG ; it makes sense to de� ne the average
exponent, as we did in the scalar case,

N½ D 1
T

Z T

0

½.t/ dt (21)

where T is the time interval over which the average is computed.
For a given basis set represented by E.t/, we use ND to denote
the corresponding diagonal matrix of average exponents. This al-
lows us to write8.T; x/E.0/ D E.T / exp. ND ¢ T /. Comparisonwith
Eq. (8), 8.T ; x/L D N6, proves the followingpropositionshowing
the equality of the average instantaneous rates and the � nite time
Lyapunov exponents when E.0/ D L .

Proposition3:The initializationE.0/ D L generatesanormalized
solution basis E.t/ such that E.T / D N and the corresponding
exp. ND ¢ T / D 6. We have

N½i D 1
T

Z T

0

½i .t/ dt D ¹i D 1
T

¾i (22)

for i D 1; : : : ; m.

De� nition 3: The instantaneous rates ½1.t/; : : : ; ½m.t/ when
Eq. (19) is initialized by E.0/ D L are the kinematic eigenvalues30

for the linear system Pv D F .t/v.
We capture timescale information about the characteristic rates

at which the magnitudes of vectors change in the kinematic eigen-
values ½1.t/; : : : ; ½m.t/ and their averages N½1; : : : ; N½m , the latter of
which are the � nite time Lyapunov exponents.Note that we do not
have a means of directly computing the kinematic eigenvalues;we
must � rst calculate L at an initial point x from the transition ma-
trix and use it to initialize Eq. (19). Then integrating Eq. (19), we
can compute the kinematic eigenvalues and E at subsequentpoints
Á.t; x/. At the initial point x, the column vectors of L de� ne the
associated spectral � ltration in Tx X . At subsequent points Á.t; x/
along the trajectory, the associated spectral � ltrations can be repre-
sented using E.t/; however, E.t/ does not remain orthogonal, but
it is again at t D T where E.T / D N . Alternatively, one can derive
a differential equation for propagating L along the trajectory such
that the orthogonality is preserved.14;20;23

There is also timescale information regarding the rates at which
thedirectionsof thecolumnvectorsof either E or L changealongthe
trajectory.The method investigatedin this paperdoes not extractthis
timescale information.Note that when G D I it would be equivalent
to write Eq. (20) as ½.t/ D eT Fe; however, writing it as we have
clari� es that the skew-symmetric part of F , namely, 1

2 .F ¡ FT /,
does not contribute to ½.t/. For example, the symmetric part of the
constant matrix

F D
µ

0 !

¡! 0

¶
(23)

is the zero matrix and both kinematic eigenvalues for Pv D Fv will
be zero, despite the fact that vectors evolving according to Pv D Fv
will rotate with frequency !. Wiesel34 has investigated a means
of adding an imaginary part to the Lyapunov exponents to capture
this additional timescale information in analogy with the LTI case.
Our focus on the magnitude rates, rather than the rotational rates,
is consistent with our interest in multiple timescale systems of the
boundary-layer type.

Timescale Information in the In� nite Time Limit:
Convergence and Metric Independence

In generalthe timescaleinformationdependson thechoiceofmet-
ric and coordinates. Given a particular choice, we can ensure that
the Lyapunov exponents are invariant under a coordinate transfor-
mation and that the Lyapunovvectors transformto mutuallyorthog-
onal vectors by transforming the metric appropriately as in propo-
sition 2a. In this manner, consistency in the timescale information
can be achieved; however, the initial choice of metric and coordi-
nates is arbitrary. Thus the timescales can be manipulated as noted
by Greene and Kim,32 and we must conclude that timescales are in
general not inherent features of a nonlinear dynamic system.

The typical starting point for timescale analysis is a differential
equation model, expressed in a particular set of coordinates. Un-
less there is a compelling reason to employ a non-Euclideanmetric,
one would use the Euclidean metric. The timescale information
characterizes the system behavior in terms of exponential rates of
expansion or contraction of tangent vectors along orbits. The Eu-
clidean metric is constant along orbits, so that any exponential be-
havior is due to thedynamics.A strikingillustrationof manipulating
timescales is that there exists35 a coordinate transformationz D h.x/
such that Px D f.x/ becomes Pz D c, where c is a constant vector, lo-
cally in the neighborhood of any point x that is not an equilibrium
point. Any timescale behavior that existed in the x representation
has been absorbed into the coordinate transformation.On the other
hand, there exists a class of metrics and coordinates for which the
Lyapunovexponentsand the induced� ltrationsare invariantfor suf-
� ciently long averaging time; this class is broad enough to make the
timescale information useful. Simply stated, the variations across
this class only cause subexponentialvariations in the timescale be-
havior and such variationsdiminish with increasingaveraging time.
In this section we provide the details for understanding this feature
and also address the issue of convergencefor both Lyapunov expo-
nents and vectors.This requires considerationof the limit of in� nite
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averaging time. To consider the limiting case of the averaging time
going to in� nity, we assume, just for this section, that X is invariant
with respect to the � ow, that is, for any x 2 X , Á.t ; x/ 2 X for all
t 2 .¡1; 1/.

De� nition 4: For any .x; v/ 2 T X , the in� nite time upper and
lower forward Lyapunov exponents are de� ned by

N¹.x; v/ D limT ! 1
1
T

³
k8.T; x/vk

kvk

´
(24)

¹
¯
.x; v/ D limT ! 1

1
T

³
k8.T; x/vk

kvk

´
(25)

where k ¢ k is the metric induced norm and lim and lim are the
limit supremum and in� mum, respectively.The in� nite time upper
and lower backward Lyapunov exponents N¹¡.x; v/ and ¹

¯
¡.x; v/

are de� ned the same way except with 8.¡T ; x/ replacing 8.T; x/.
Under the general assumption of this paper that the vector � eld

f .x/ is smooth and the assumption of this section that X is invari-
ant in addition to being compact, it follows that F is bounded from
aboveandbelowonany trajectoryÁ.t ; x/ with x 2 X for all t . Conse-
quently, the � nite time exponentfor any nonzerovectorv 2 Tx X will
be bounded for all time, and the limits de� ned in Eqs. (24) and (25)
will exist and be � nite.15;36 A simple illustrationof the need for the
limit supremum is limT ! 1.1=T / eT sin T D limT ! 1 sin T D 1;
whereas the limit does not exist, the lim does. The lim for this
example is ¡1.

The relationship between an in� nite time upper Lyapunov expo-
nent N¹i .x/ and the corresponding � nite time Lyapunov exponent
¹i .T; x/ is N¹i .x/ D limT ! 1¹i .T ; x/. In the in� nite time limit, the
exponents depend only on x. Whereas in the � nite time setting we
could only say in proposition1 that, for all v 2 L i nL i ¡ 1, ¹.T; x; v/
is in the interval ¹i ¡ 1 < ¹.T ; x; v/ · ¹i ; in the in� nite time setting
we can say that, for all v 2 L i nL i ¡ 1 , N¹.x; v/ D N¹i .x/. This is be-
cause in the in� nite time limit the component of v correspondingto
the largestexponentwill dominate as illustratedlater in this section.

Let L.T; x/ denote the matrix whose columns are the Lyapunov
vectors at x obtained with an averaging time T , ordered as
we have been assuming. De� ne L.x/ D limT ! 1 L.T; x/. We
can also consider the limiting behavior of L¡ in the SVD of
8.¡T; x/ D N ¡6¡.L¡/T for backward time propagation.The col-
umn vectors of L¡ are interpreted as vectors in Tx X . De� ne
L¡.x/ D limT ! 1 L¡.¡T; x/. Assume that the limits for L and
L¡ exist for now; the convergence of the Lyapunov vectors will
be addressed later. At each x 2 X , the set fli .x/; i D 1; : : :; mg is an
orthonormal basis for Tx X , as is the set fl¡

i .x/; i D 1; : : : ; mg; this
latter set is ordered such that ¹¡

1 > ¢ ¢ ¢ > ¹¡
m . We can de� ne � ltra-

tions of Tx X using the two bases, namely, L1 ½ L2 ½ ¢ ¢ ¢ ½ Lm and
L¡

1 ¾ L¡
2 ¾ ¢ ¢ ¢ ¾ L¡

m , where L¡
i D spanfl¡

i ; l¡
i C 1; : : : ; l¡

m g.
De� nition 5: When the forward (respectively, backward) in-

� nite time exponents have the property N¹i .x/ D ¹
i
.x/ [respec-

tively, N¹¡
i .x/ D ¹¡

i
.x/], for i D 1; : : : ; m, the system is said

to be forward regular (respectively, backward regular) at x.
The system is Lyapunov regular at x if 1) it is forward and
backward regular at x, 2) N¹i .x/ D ¡ N¹¡

i .x/, i D 1; : : : ; m, 3)
the forward and backward � ltrations have the same dimen-
sion, 4) there exists a decomposition Tx X D E1.x/ © ¢ ¢ ¢ © Em .x/
into invariant subbundles such that L i .x/ D E1.x/ © ¢ ¢ ¢ © Ei .x/
and L¡

i .x/ D Ei .x/ © ¢ ¢ ¢ © Em .x/, i D 1; : : : ; m, and 5) for any
v 2 Ei .x/nf0g, the limt ! §1.1=t/ k8.t; x/vk D N¹i .x/, where ©
denotes direct sum. We note that Barreira and Pesin (Ref. 12, p. 26)
de� ne forward regular using N¹i D ¡ N¹¤

i where N¹¤
i , i D 1; : : : ; m,

are the Lyapunov exponents for the associated adjoint system.
They say the Lyapunov exponents are exact when N¹i .x/ D ¹

i
.x/,

for i D 1; : : : ; m. However, when the linear system matrix F is
bounded, as assumed here, forward regularity and exactness are
equivalent properties (Ref. 12, p. 26). We also note that, under our
assumption that we always have m distinct exponents, condition 3
is automatically satis� ed.

Given the forward and backward � ltrations for a Lyapunov
regular system, we can construct the invariant subbundles by

Ei .x/ D L i .x/
T

L¡
i .x/; i D 1; : : : ; m . These subbundles are the

generalizations of the eigenspaces for LTI systems. By invariant,
we mean that given a solution [Á.t; x/; 8.t ; x/v] with v 2 Ei .x/, we
have 8.t; x/v 2 Ei [Á.t; x/] for all t . All vectors in Ei .x/ are charac-
terized by the Lyapunov exponent N¹i .x/. In general the Lyapunov
vectors are metric dependent because they are required to be mutu-
ally orthogonalwith respect to a speci� c metric. On the other hand,
because the � ltrations are de� ned by the Lyapunov exponents, it
follows that if the exponents are invariant for a given class of met-
rics, the � ltrations and their intersections will also be invariant for
that class.

For a general nonlinear system the in� nite time Lyapunov expo-
nents at an equilibrium point xeq are10 the real parts of the eigenval-
ues of the Jacobian matrix F.xeq/, the system is Lyapunov regular
on X D fxeqg, and the invariant subbundles (subspaces in this case)
are the (real) eigenspaces.For the case of m distinct exponents, the
limiting values of the � nite time Lyapunov vectors li , i D 1; : : : ; m,
are related to the eigenvectors of F.xeq/ in the following manner.
Let vi , i D 1; : : : ; m, be the normalized eigenvectors, assumed for
simplicity of discussion to be real and ordered such that the corre-
sponding eigenvaluesgo from smallest to largest. Then l1 D v1 , l2 is
orthogonalto l1 and lies in the subspacespannedby v1 and v2, etc. In
other words, the li vectors are obtained by applying Gram–Schmidt
orthogonalizationto the eigenvectors, starting with v1 and moving
successively upward in index. Similarly the l¡

i vectors (and the ni

vectors)are obtainedby applyingGram–Schmidt orthogonalization
to the eigenvectors,startingwith vm and moving successivelydown-
ward in index. Because the metric de� nes orthogonality, different
metrics will produce different sets of li and l¡

i vectors except for
the common starting vectors l1 D v1 and l¡

m D vm . However, if the
Lyapunov exponents are metric invariant, as they are for X D fxeqg,
then the � ltration is metric invariant, even though the orthonor-
mal basis used to represent the � ltration is metric dependent. If
we intersect the forward and backward � ltrations, we will get the
eigenspaces,independentof the metric used.Thus, theLyapunovex-
ponentsand vectorsare directlyrelated to the eigenvaluesand eigen-
vectors of the Jacobian matrix in the special case of analyzing the
timescale structure associated with an equilibrium point; of course
this shouldbe the case becausethe eigenvaluesandeigenvectorscor-
rectly characterize the time-scale structure at an equilibrium point.

For the case in which X is a periodic orbit, the Lyapunov ex-
ponents are10 the real parts of the Floquet exponents. For the case
of distinct real exponents, at each point on the periodic orbit, the
Lyapunov vectors are the orthogonal counterparts of the eigenvec-
tors of the monodromy matrix for that point. The Lyapunov vectors
rotate along the periodic orbit in such a way that they coincide with
their initial directions one period later.

De� nition6:For an m-dimensionaldynamicsystemon a compact
set X with � nite time Lyapunov exponents ¹1 < ¹2 < ¢ ¢ ¢ < ¹m ,
neighboring exponents ¹ j .T; x/ and ¹ j C 1.T; x/ are uni-
formly distinct at x, if there exists a T independent spec-
tral gap 1¹i .x/ and an averaging time T1.x/ < Nt.x/ such that
¹ j C 1.T ; x/ ¡ ¹ j .T ; x/ > 1¹ j .x/ for all T 2 [T1.x/; Nt.x/]. Note
in this de� nition that Nt.x/ can be � nite. T1.x/ is introduced to elim-
inate any initial transient period that is not representative of the
subsequentbehavior. In the case of � nite Nt.x/, now T1.x/ should be
a small fractionof Nt.x/. Figure 3 providesan example.The de� nition
is adapted from Goldhirsch et al.15

Goldhirschetal.15 developedevolutionequationsfor¹i .T; x/ and
the vectors fli .T ; x/; i D 1; : : : ; mg for the Euclidean metric case
that clari� ed theconvergencebehaviorof this timescaleinformation.
Their results are extended for a general metric by the following
lemma; the proof of which follows theirs.

Lemma: Over intervals of the averaging time T during which the
� nite time Lyapunovexponentsaredistinct,the � nite time Lyapunov
exponents and vectors at x 2 X evolve with the averaging time T
according to the differential equations
@

@T
exp[2¹i .T; x/T ]

D exp[2¹i .T; x/T ]lT
i QT

£
F T .T /GT C PGT C GT F.T /

¤
Qli
(26)
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Fig. 3 Finite time Lyapunov exponents as functions of the averaging time T for Euclidean and non-Euclidean metrics.

@

@T
li D

i ¡ 1X

k D 1

£
lT
k QT

£
F T .T /GT C PGT C GT F .T /

¤
Qli

expf[¹i .T; x/ ¡ ¹k .T ; x/]T g ¡ expf[¹k.T; x/ ¡ ¹i .T; x/]T g
lk

Ccii li C
mX

k D i C 1

£
lT
k QT [F T .T /GT C PGT C GT F .T /]Qli

expf[¹i .T; x/ ¡ ¹k .T ; x/]T g ¡ expf[¹k.T; x/ ¡ ¹i .T; x/]T g lk

(27)

where F D F [Á.T; x/] and Q is the rotation matrix in the general-
ized polar decomposition8 D QG¡1

0 S de� ned by Q D N LT G0 and
S D G0 L6LT G0 with both Q and S depending on x and T . The
coef� cient cii , not speci� ed here, is determined such that li evolves
continuouslywith unit length.

Proof: Express li .T C 1T; x/ to � rst-order in 1T as

li .T C 1T ; x/ D li .T ; x/ C 1T 6m
j D 1ci j l j .T ; x/ (28)

Substitute this and the � rst-order approximations

8.T C 1T; x/ D 8.T; x/ C 1T F.T /8.T; x/

G[Á.T C 1T; x/] D G[Á.T; x/] C 1T PG[Á.T; x/]

exp [2.T C 1T /¹i .T C 1T; x/]

D exp [2T ¹i .T ; x/] C 1T
d

dT
exp[2T ¹i .T; x/]

into the equation

[8.T C 1T ; x/]T G[Á.T C 1T; x/]8.T C 1T ; x/li .T C 1T ; x/

D exp[2.T C 1T /¹i .T C 1T ; x/]G.x/li .T C 1T ; x/

Premultiply both sides of the resulting equation by lT
k .T; x/. The

zeroth-orderterms in 1T cancelout.The � rst-orderterms lead to the

� rst equation in the lemma when k D i and de� ne the coef� cientsci k

when k 6D i . Substituting these coef� cients into Eq. (28) and taking
the limit as 1T ! 0 of [l.T C 1T; x/ ¡ l.T ; x/]=1T leads to the
second equation in the lemma. ¤

Theorem: If the neighboring Lyapunov exponents ¹ j .T; x/ and
¹ j C 1.T ; x/ are uniformly distinct and the metric G is contin-
uously differentiable on X , then as T increases the subspace
L j .T ; x/ D spanfl1.T ; x/; : : : ; l j .T; x/g converges to a � xed sub-
space L j .x/ at least at the rate exp [¡1¹ j T ] where 1¹ j is the
spectral gap.

Proof: In Eq. (27), the rate of change of li is expressedas a linear
combinationof theLyapunovvectorsat the correspondingtime.The
continuityof FT .x/G.x/ C PG.x/ C G.x/F .x/ on the compact set X
allows us to establish� nite upper and lower boundsfor the quadratic
forms that appear in the coef� cients. Thus, one can show that the
coef� cients of the � nite time Lyapunov vectors fl j C 1; : : : ; lmg for
the rates of change of l1; : : : ; l j go to zero at least at the rate
exp .¡1¹ j T /. Hence, the changes in the vectors l1; : : : ; l j become
con� ned to the subspace L j .x/ that they span, and the subspace
itself converges. ¤

By applying a similar approach for backward propaga-
tion, we could show that a uniform gap between ¹¡

j .¡T; x/

and ¹¡
j C 1.¡T ; x/ leads to the convergence of L¡

j C 1. Al-
though only the Euclidean metric was considered, the paper
by Goldhirsch et al.15 contains the basic ideas in the preced-
ing theorem and its proof, as well as the result that an in-
dividual Lyapunov vector li will converge if ¹i is uniformly
distinct with respect to both ¹i C 1 and ¹i ¡ 1 at the rate pro-
portionalto max(fexp [¹i .T; x/ ¡ ¹i C 1.T; x/]T gI expf[¹i ¡ 1.T; x/
¡ ¹i .T ; x/]T g). For i D 1 and m, there is only one neighbor ¹; one
of the two exponential terms is unde� ned, and the remaining one
is the convergence rate. A case that can arise is that there is one
persistent gap in the exponents that leads to the convergence of a
subspace,but there are no other gaps,and thus, theLyapunovvectors
in the subspace will not converge. If the � nite time Lyapunov ex-
ponents ¹i .T ; x/ and ¹i C 1.T; x/ are not uniformly distinct, then
¹
¯

i .x/, N¹i .x/, ¹
¯

i C 1.x/ and N¹i C 1.x/ will exist, but the intervals
[¹
¯

i .x/; N¹i .x/] and [¹
¯

i C 1.x/; N¹i C 1.x/] will overlap. The Lyapunov
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vectors may or may not converge; if they do converge, the conver-
gence will not be exponential.

Consider a two-dimensional nonlinear system Px D f .x/ with the
region of interest X a compact invariant set. We want to investigate
the relationshipbetween the timescale informationfor theEuclidean
metric and the timescale information for a non-Euclidean metric
G.x/. For an initialpointx 2 X and a time intervalT , let l1, l2 , n1, n2,
¹1, and ¹2 , all functionsof .T; x/, denote the timescale information
obtained from an SVD assuming the Euclideanmetric. An arbitrary
initial vector in Tx X , expressed by v D c1l1 C c2l2, propagates to
v.T / D c1e¹1T n1 C c2e¹2T n2. The multiplier for the net change in
length of this vector, according to the metric G.x/, from t D 0 to
t D T is

¾ .T / D
kv.T /kGT

kv.0/kG0

D
»

c2
1 exp.2¹1T /nT

1 GT n1 C 2c1c2 exp [.¹1 C ¹2/T ]nT
1 GT n2 C c2

2 exp.2¹2T /nT
2 GT n2

c2
1lT

1 G0l1 C 2c1c2lT
1 G0l2 C c2

2lT
2 G0l2

¼ 1
2

D exp.¹2T /

³
c2

1 exp[2.¹1 ¡ ¹2/T ]nT
1 GT n1 C 2c1c2 exp [.¹1 ¡ ¹2/T ]nT

1 GT n2 C c2
2nT

2 GT n2

c2
1 lT

1 G0l1 C 2c1c2lT
1 G0l2 C c2

2lT
2 G0l2

´ 1
2

(29)

where G0 and GT are the values of G at the initial and � nal points,
respectively. Now assume that the � nite time Lyapunov exponents
¹1 and ¹2 areuniformlydistinct, that is, there exist a gap1¹i .x/ and
anaveragingtime T1.x/ such that¹2.T ; x/ ¡ ¹1.T; x/ > 1¹1.x/ for
all T > T1.x/. Computing the upper Lyapunov exponent, we have
for c2 D 0, that is, for v D c1l1 that

N¹.x/ D limT ! 1¹1.T ; x/ C limT ! 1
1
T

µ
nT

1 .T; x/GT n1.T; x/

lT
1 G0l1

¶ 1
2

D limT ! 1¹1.T; x/ (30)

whereas for c2 6D 0, that is, for any vector not in the subspace given
by spanfl1g

N¹.x/ D limT ! 1¹2.T; x/

C limT ! 1
1
T

³
c2

2nT
2 .T ; x/GT n2.T ; x/

c2
1lT

1 G0l1 C 2c1c2lT
1 G0l2 C c2

2 lT
2 G0l2

´ 1
2

D limT !1¹2.T; x/ (31)

The second terms on the right-hand sides of Eqs. (30) and (31) van-
ish because the expression within the brackets has � nite upper and
lower bounds on X , given the continuity of G.x/ and the compact-
ness of X . Thus, the differencebetween the � nite time exponentsfor
the metric G and for the Euclidean metric diminishes to zero with
increasing T . Analogous results showing the metric independence
of ¹

1
.x/ and ¹

2
.x/ can be obtained. Proving the invariance of the

Lyapunov exponentswith respect to smooth coordinate transforma-
tions can be done in a similar way.37

An observation particularly relevant for practical computation
is that the metric effect for any G with subexponential growth or
decayalong the orbits in X will diminishwith increasingT . In other
words, if the metric-inducedchangesto the lengthof tangentvectors,
relative to their Euclidean lengths, are subexponential,for example,
constant or proportional to T n for any � nite n, then the difference
in the exponents for the Euclidean metric and G diminishes as T
increases. On the other hand, if the metric effect is exponential,
then it will alter the exponents. The coordinate dependence of the
exponents is very similar. Relative to the exponents for a particular
set of coordinates, the difference in the exponents for a new set of
coordinateswithout changing the metric will diminish with T , if the
coordinate transformation does not alter the linear behavior along
orbits at the exponential level.

The upper Lyapunov exponents given by Eqs. (30) and (31) ex-
ist that is, the � nite time exponents ¹1 and ¹2 will converge in
the lim sense, for the reasons given earlier. Denote the exponent
given by Eq. (30) by N¹1.x/ and that given by Eq. (31) by N¹2.x/;
all vectors in Tx X have one of these two exponents. Also ¹

¯
1.x/

and ¹
¯

2.x/ exist. If the timescale behavior is uniform along the or-
bit, which would be indicated by constant kinematic eigenvalues,
then the upper and lower exponentswill be equal. In the absence of
uniformity, in general N¹1.x/ 6D ¹

¯
1.x/ and N¹2.x/ 6D ¹

¯
2.x/, that is, the

system will not be forward regular at x. However, there will exist
a � nite time T2 beyond which the uniformly distinct � nite time ex-
ponents ¹1.T ; x/ and ¹2.T ; x/ lie in disjoint intervals, namely, for
T > T2 , ¹1.T; x/ 2 [¹

¯
1.x/; N¹1.x/], and ¹2.T; x/ 2 [¹

¯
2.x/; N¹2.x/].

For the case of nonuniform timescale behavior, the theory guaran-
teeing the convergenceof the Lyapunov exponents in the limit (not
just limsup) requires12;31 ergodic or recurrent behavior, a periodic
orbit being a special case of recurrent behavior.

The results for a compact and invariant set X that we have just
obtained for the general two-dimensional case can be extended to
m dimensions.

Timescale Analysis Procedure
With the theory and understanding of the timescale informa-

tion established, we can now describe how one would compute the
timescale structure of a nonlinear dynamic system. For develop-
ing theory requiring limits, it is important for X to be invariant to
ensure the existence of orbits on an in� nite time interval. When
the interest is in numerically computing timescale information, the
critical property of X is that there is useful timescale information
that converges to suf� cient accuracy over the available time inter-
vals. In general, it will not be feasible, but nor is it necessary, to
resolve the complete timescale structure. What is important is to
resolve the timescales that are disparate relative to the region X .
If there are two or more suf� ciently disparate timescales, then the
associated timescale structure can be resolved.

We say the behavior is uniform on X , if the spectrum Sp.T; x/
is approximately uniform in x and T for T > T1, where T1 is as
de� ned in de� nition 6. We look for gaps that split the spectrum
into smaller subsets. For example, if there are m f c large nega-
tive exponents, ms near-zero exponents, and m f e large positive
exponents, with m f c C ms C m f e D m, we would have a splitting
of the form Sp.T; x/ D Sp f c.T; x/ [ Sps.T; x/ [ Sp f e.T; x/ where
Sp f c, Sps , and Sp f e are the subsets corresponding to the fast-
contracting, slow, and fast-expanding behaviors, respectively. For
the timescale structure induced by the splitting to be computable
the gaps in the spectrum must be suf� ciently large relative to the
characteristic time interval for X (to be de� ned). If these condi-
tions are satis� ed, then we can resolve the tangent space structure
Tx X D E f c.x/ © E s .x/ © E f e.x/, referred to as a splittingof the tan-
gent space. A special case of this splitting is Tx X D E f c.x/ © E s .x/,
as in our motivating example, where there is only one gap and there
is no fast expanding behavior.

The steps in computing and interpreting timescale information
are the following:

1) Choose the compact region X of the state space to be analyzed
and de� ne a Riemannianmetric on X . In theabsenceof a compelling
reason to use a non-Euclidean metric, use the Euclidean metric.

2) Compute, for a range of averaging times T , the timescale in-
formation along trajectories that collectively sample the region X .
Compute the correspondingkinematic eigenvalues to determine the
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degree of uniformity in the timescale structure. If the timescale
structure is not uniform, one or more subsets of X may have uni-
form structure, and it may be of interest to analyze each separately.

3) Identify any persistent, suf� ciently large spectral gaps. Deter-
mine a characteristic time interval Ntc for X , an average maximum
T for well-chosen starting points. For example, if X is a transient
region for which orbits enter on one side and exit on the other side,
then Ntc would be the characteristic time to traverse X . Determine if
there are any consistent gaps in the spectrum indicating timescale
separation in the dynamics on X . If there is a spectral gap 1¹ j

and Ntc is at least several times as long as .1¹ j /
¡1 , such as shown in

Fig. 3, then the subspacesL j .T; x/ and L¡
j C 1.¡T; x/ will converge.

If X is invariant,then a persistentgap of any size will ensureconver-
gence. If there are additional suf� ciently large gaps, then additional
timescale structure can be resolved.

4) Resolve the timescale structure. For subspaces L j .x/ and
L¡

j C 1.x/ that converge, L j .x/ will have minimum and maximum
Lyapunov exponents for averaging times in the interval [T1; Nt.x/].
To consistentlydeal with forward time, we will talk about N j C 1.x/,
which is the same subspace as L¡

j C 1.x/. N j C 1.x/ will have mini-
mum and maximum Lyapunov exponents for the same interval of
averaging times. These minimum and maximum exponents bound
the average exponential rates at which vectors in the two subspaces
grow or decay. The difference between the maximum exponent for
L j .x/ and the minimum exponent for N j C 1.x/, that is, 1¹ j .x/, is
a lower bound on the gap between the exponents for the two sub-
spaces.For a subspacethat converges, the associatedexponentswill
most generallycontinueto varyas T is increased.If any neighboring
exponents associated with the subspace remain distinct and a suf� -
ciently large, persistent gap exists, then a splitting of this subspace
can be resolved.

For the purposeof modeldecomposition,it is the geometricstruc-
ture inducedby relatively large gaps in the Lyapunovexponents that
is of interest. Fortunately, it is exactly this structure that is resolv-
able. The exponents themselvesneed not converge for this structure
to be computed. Although we have assumed that the � nite time
Lyapunov exponents are distinct to simplify the presentation, there
could be values of T for which there are fewer than m distinct ex-
ponents. The exponents still de� ne a � ltration at such values of T ;
however, the number of elements of the � ltration will be reduced to
the number of distinctexponents.A persistent,suf� ciently large gap
in the exponents will still lead to subspace convergence; however,
in the general case the evolution equations (26) and (27) cannot be
used to prove this due to the singularities associated with repeated
exponents.

The next step for model decompositionwould be to use the sub-
space structure to determine appropriatecoordinates.This involves
integrating vector � elds or more generally distributions. This step
and the theory supporting it are beyond the scope of this paper.

Numerical Example
We return to the motivating example described at the beginning

of the paper. Recall that we have two coordinate representations
of a dynamic system. In the .w1; w2/ representation, the dynamics
are linear, and the timescale properties are easily deduced from the
eigenvalues and eigenvectors of the system matrix A in Eq. (1). In
the .x1; x2/ representationthe dynamicsare nonlinear.Provided that
the state transformationand/or the metricwe use do not signi� cantly
alter the timescales, which is the case here, the correct result is that
the computed Lyapunov exponents and vectors should converge
to the eigenvalues and transformed, orthogonalized eigenvectors
of A. Because the matrix for transforming tangent vectors is state
dependent, the transformed, orthogonalized eigenvectors are state
dependent. We consider an orbit segment in the transient region X
shown in Fig. 1b (the orbit with the times indicated along it) to
determine if the convergencerate is fast enough to allow the correct
timescale information to be computed. There is a strategy for this
example that we want to avoid using. The nonlinear system has a
globallyattractingequilibriumpoint at the origin, and the timescale
information is the same at the equilibrium point as it is in X due to
the underlying linearity. With a long enough averaging time, the
orbit will spend most of the time in the vicinityof the origin and the

exponentswill be dictated by the timescales near the origin, that is,
by the eigenvalues of the Jacobian matrix at the origin, which has
the same eigenvaluesas the A matrix of the linear system.We would
like to determine the correct timescale information from the orbit
segment in X because X is the region for which we are interested in
knowing the timescale structure. A general method cannot rely on
extractingtimescale informationfrom the vicinityof an equilibrium
point becausein general therewill not be an equilibriumpoint that is
attractingand has thecorrecttimescale informationfor the region X .

Assuming the Euclidean metric in the w system, Gw D I , an ap-
propriate metric in the x system, if the length of a tangent vector is
to be invariant under the transformation, is

G x .x/ D H T .x/H .x/ (32)

where

H .x/ D @h.x/

@x
D

µ
1 ¡ 2a.x1 C x2/ ¡2a.x1 C x2/

2a.x1 C x2/ 1 C 2a.x1 C x2/

¶

The linearized dynamics for the x representation are Pv D
F.x1.t/; x2.t//v, where

F D
µ
¡1 ¡ 2a.x1 C 10x2/ ¡ ´.x1; x2/ ¡2a.10x1 C 19x2/ ¡ ´.x1; x2/

2a.¡8x1 C x2/ C ´.x1; x2/ ¡10 C 2a.x1 C 10x2/ C ´.x1; x2/

¶

(33)

and ´.x1; x2/ D 54a2.x1 C x2/2.
For this simple low-order system, we employ a straightforward

SVD-based method to determine the Lyapunov exponents and vec-
tors. (Dieci et al.30 provide a survey of methods of computing Lya-
punov exponents and links to the vast literature on these methods.)
The computations are done using MATLAB®. The nonlinear and
linearized systems, Eqs. (3) and (4), are integrated simultaneously
using Gear’s method (ODE15s). For the Euclidean metric, the � -
nite time Lyapunov exponents and vectors for the interval T are
computed by applying the SVD function to 8.T; x/. For a gen-
eral metric G, we compute the timescale information as stated in
proposition 2b.

We determine the timescale structure for the orbit of the dy-
namic system [Eq. (2)] with a D 0:01, associated with the initial
point .x1; x2/ D .40; ¡39/, as shown in Fig. 1b. The � nite time Lya-
punov exponents at x D .40; ¡39/ for averaging times up to three,
at which time the orbit leaves X , are shown in Fig. 3. There is a
minimum gap 1¹1 of 9; thus, convergence of the Lyapunov vec-
tors should occur for T > 0:3, depending on the convergence tol-
erance. Because it takes three time units to traverse the region, it
is feasible to average long enough for convergence. Because the
system dimension m D 2, convergence of the subspace L1 at our
initial point implies convergence of l1 at that point. Our numerical
results con� rm that l1 at x D .40; ¡39/ converges to a � xed direc-
tion. For the Euclideanmetric, convergencerequires about T D 0:3,
which is 31¹¡1

1 , whereas for the metric G , the convergenceis much
faster. The limiting l1 vector is the same for both metrics. From our
knowledge of the equivalent linear system in this contrived exam-
ple, we independentlydetermine L x D H ¡1.x/Lw , where Lw is con-
structed from orthogonalizing the eigenvectors of the LTI system,
and � nd agreement to the level of precision we are using. Let vw

1
and vw

2 denote the eigenvectors of A corresponding to the eigen-
values ¸1 D ¡10 and ¸2 D ¡1, respectively.We � nd that lx

1 , the � rst
columnof L x , points in the same directionas the transformedeigen-
vector of A corresponding to ¸1, that is, lx

1 D H ¡1.x/vw
1 . Similarly,

examining N x for T D 1, as obtained from the SVD, we � nd that
nx

2 is the transformed eigenvector of A correspondingto ¸2 , that is,
nx

2 D H ¡1[Á.1; x/]vw
2 .

The Lyapunov vectors lx
1 and nx

2 [or equivalently .l¡
2 /x ] denoted

by the longer arrows [one arrowhead for slow (nx
2 ), two for fast

(lx
1 )] are shown in Fig. 1b at several points along the orbit under

consideration. These vectors correctly represent the slow and fast
directions, in that they are tangent to the slow and fast coordinate
curves (denoted by dashed and dash–dotted lines, respectively). In
other words, the fast/slow splitting Tx X D E f c.x/ © E s.x/ is given
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Fig. 4 Lyapunov exponents, kinematic eigenvalues, and eigenvalues of F along the orbit shown in Fig. 1b.

by E f c.x/ D spanflx
1.x/g and E s.x/ D spanfnx

2.x/g. The eigenvectors
of the Jacobian matrix F , denoted by the shorter, lighter arrows,
do not in general correctly indicate the slow and fast directions.
The calculation of nx

2 at t D 0 requires either forward or backward
integration along the orbit segment leading to the t D 0 point. This
segment lies partly outsideof X . The region X could be enlarged to
include this segment. Another option is to use evolution equations
for N , developed by Greene and Kim,32 to propagate N computed
at a later time point, such as t D 1, back to the t D 0 point.

The Lyapunov exponents converge to ¹1 D ¡10 and ¹2 D ¡1
and are, thus, consistent with the eigenvalues of the equivalent lin-
ear system. Figure 3 shows that, if the exponents are computed
with the non-Euclidean metric G induced by the transformation,
the convergence is very rapid; if the exponents are computed with
the Euclidean metric, it takes about one time unit for the metric
effect to become negligible.Thus, we are able to extract the correct
information from the region X for either the Euclidean or non-
Euclidean metric. When the Euclidean metric was used, the Lya-
punov exponents were computed at many points along the orbit
using an averaging time of T D 1 in each case. They are plotted in
Fig. 4. Comparison of the exponentswith the eigenvaluesof the Ja-
cobian matrix F shows that the Jacobian eigenvalues provide good
approximations once the orbit reaches the slow manifold .t ¼ 1/
but are inaccurate off the slow manifold; the Lyapunov exponents
on the other hand are uniformly accurate. Figure 4 also shows the
kinematic eigenvalues (see de� nition 3) for the non-Euclideanmet-
ric, computed by initializing Eqs. (19) and (20) with the value of
L for the point .x1; x2/ D .40; ¡39/, marked t D 0 in Fig. 1b. The
kinematic eigenvalues are constant along the trajectory and, thus,
indicatethat the timescalebehavioris uniform.The kinematiceigen-
values for the Euclidean metric (not shown) are different than ¡1
and ¡10 initially, due to local exponential-leveleffects of the coor-
dinate transformation;this is why the convergenceof the exponents
is slower, as already mentioned, for the Euclidean metric.

For this simple example it is clear that the vector � elds nx
2.x/ and

lx
1.x/ could be integrated to obtain the slow and fast curvilinear co-

ordinatecurves, respectively.As stated earlier, the general treatment
of this step is beyond the scope of this paper.

Conclusions
A step has been taken toward developing a general method of

determining timescale structure in � nite-dimensionalnonlinear dy-
namic systems. The timescale information consists of � nite time
Lyapunov exponents and vectors. The supporting theory for the in-
terpretationand computationof the timescale information has been
synthesized. Away from equilibrium points, periodic orbits, and
certain other invariant sets, the timescale structure of a dynamic
system is in general not an inherent system feature, that is, invariant
under arbitrary coordinateand/or metric transformations.However,
regarding the usual situation of analyzing a differential equation
model in a particular set of coordinates using the Euclidean met-
ric, the timescale structure is metric and coordinate independent
over the class of metric and coordinate changes that do not alter
the average exponential behavior in the region of interest, and our
method can identify this structure and provide the information nec-
essary to determinethe appropriatecoordinates.Thus, ourmethod is
more general than scaling and other methods that assume the initial
model is already in appropriatecoordinatesand that the task is only
to identifywhich coordinatesare slowand which are fast. In contrast
to the eigenvalues and eigenvectors of the Jacobian matrix for the
linearized dynamics, which do not in general correctly identify the
timescalestructure,the Lyapunovexponentsand vectorsdo, in prin-
ciple, correctly identify the timescale structure. On the other hand,
the computation of the Lyapunov exponents and vectors is more
demanding. As a � rst step in investigating the computational fea-
sibility and accuracy of the timescale information, the method was
veri� ed for a low-order problem in which the correct information is
known by independentmeans.
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