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SUMMARY

The dichotomic basis method is further developed for solving completely hyper-sensitive Hamiltonian
boundary value problems arising in optimal control. For this class of problems, the solution can be
accurately approximated by concatenating an initial boundary-layer segment, an equilibrium segment, and
a terminal boundary-layer segment. Constructing the solution in this composite manner alleviates the
sensitivity. The method uses a dichotomic basis to decompose the Hamiltonian vector "eld into its stable
and unstable components, thus allowing the missing initial conditions needed to specify the initial and
terminal boundary-layer segments to be determined from partial equilibrium conditions. The dichotomic
basis reveals the phase-space manifold structure in the neighbourhood of the optimal solution. The
challenge is to determine a su$ciently accurate approximation to a dichotomic basis. In this paper we use an
approximate dichotomic basis derived from local eigenvectors. An iterative scheme is proposed to handle
the approximate nature of the basis. The method is illustrated on an example problem and its general
applicability is assessed. Copyright ( 2000 John Wiley & Sons, Ltd.

KEY WORDS: dichotomic transformations; singular perturbations; time scales; optimal control;
numerical methods

1. INTRODUCTION

Over the past several decades, signi"cant progress has been made in the development of both
direct and indirect numerical methods for solving optimal control problems [1]. Direct methods
that convert the optimal control problem to a non-linear programming problem using implicit
integration have risen to prominence for use in general codes [1}4] because of their versatility
and ease of use. However, our focus in this paper is on the development of an indirect method for
reasons given below.



Many optimally controlled dynamical system evolve on two or more widely separated time-
scales. A subclass of multiple time-scale optimal control problems is the class of completely
hyper-sensitive optimal control problems. The solution of a completely hyper-sensitive problem
has a characteristic three-segment structure, described qualitatively as &take-o!', &cruise', and
&landing' by analogy to an optimal airport-to-airport trajectory for a transport aircraft [5]. The
optimal solution is primarily determined by the following considerations. The cruise segment is
determined by the cost function and the state dynamics, while it is almost independent of the
boundary conditions. The take-o! segment is determined by the initial conditions, the state
dynamics, and the goal of reaching the cruise segment in forward time. The landing segment is
determined by the terminal conditions, the state dynamics, and the goal of reaching the cruise
segment in backward time. As the time interval increases, the fraction of time spent in the cruise
segment increases.

The key to handling the hyper-sensitivity with a direct method of the type mentioned above is
to use a higher density of nodes in the take-o! and landing segments. While a direct method may
produce an accurate solution to a hyper-sensitive optimal control problem, it may not produce
insight as to the multiple time-scale structure of the optimally controlled system, insight that
could facilitate the development of simple yet e!ective feedback control laws. Indirect methods
require more insight as to the problem characteristics, but simultaneously o!er more opportunity
to develop such insight.

In an indirect method, candidate optimal (i.e. extremal) solutions are obtained by solving
a Hamiltonian boundary-value problem (HBVP). Straightforward indirect methods (e.g. simple
shooting) often su!er from ill-conditioning due to &extreme sensitivity to initial conditions' [6].
The indirect multiple-shooting method [7] is a means of overcoming this ill-conditioning. The
form of ill-conditioning of interest here arises when the time interval of interest is long relative to
the rates of expansion and contraction in certain directions in the neighbourhood of the optimal
solution [8]. In the case of fast rates in all directions the HBVP, as well as the corresponding
optimal control problem, is called completely hyper-sensitive. For problems with fast rates in only
some directions, the HBVP and the optimal control problem are called partially hyper-sensitive.
Partially hyper-sensitive optimal control problems have two or more time-scales and have
solutions with boundary, and possibly interior, layers with fast changes but otherwise evolve
slowly.

The solution to a completely hyper-sensitive HBVP can be approximated by concatenating an
initial boundary-layer segment, an equilibrium segment and a terminal boundary-layer segment;
these segments correspond to the take-o!, cruise and landing segments described above. Con-
structing the solution in this composite manner alleviates the sensitivity. The (analytical) singular
perturbation method [5, 9, 10] is a formal means of constructing the composite solution using
asymptotic expansions. It has the attribute of being applicable to the partially hyper-sensitive
case, but it has the weakness of requiring the state dynamics to be given in a special form that
essentially requires a priori knowledge of the time-scale structure. A Hamilton}Jacobi}Bellman
equation based approach has been proposed [11] for completely hyper-sensitive optimal control
problems, but this approach is not extendible to the partially hyper-sensitive case.

The method considered in this paper uses a dichotomic basis to decompose the Hamiltonian
vector "eld into its stable and unstable components, thus allowing the missing initial conditions
needed to specify the initial and terminal boundary-layer segments to be determined from partial
equilibrium conditions. A by-product of this solution method is the dichotomic basis which
provides information on the phase space manifold structure in the neighbourhood of the
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optimal solution. Moreover, the method is extendible to a broad class of partially hyper-sensitive
boundary-value problems. The dichotomic basis method is inspired by the computational
singular perturbation (CSP) methodology for sti! initial value problems [12}14]. Previous
consideration of the application of CSP to optimal control can be found in Ardema [15].
Previous development and applications of the dichotomic basis method are presented by Rao and
Mease [8, 16, 17]. The challenge in making the dichotomic basis method viable is to develop
a means of determining a su$ciently accurate approximation to a dichotomic basis. In this paper
we determine an approximate dichotomic basis from local eigenvectors and propose an iterative
algorithm to handle the approximate nature of the basis. The method is illustrated on an example
problem, and its general applicability is assessed.

2. HAMILTONIAN BOUNDARY VALUE PROBLEM

In this paper, we are interested in the following class of optimal control problems. Find the
piecewise continuous control u (t)3Rm on [0, t

&
] that minimizes the scalar cost

J"P
t
&

0

L[x, u]dt (1)

subject to the di!erential constraint

xR "f (x, u) (2)

and boundary conditions

x (0)"x
0

x(t
&
)"x

&
(3)

where x (t)3Rn is the state.
The "rst-order necessary conditions for optimality lead to a Hamiltonian boundary-value

problem (HBVP) for the extremal trajectories. This HBVP is composed of the Hamiltonian
di!erential equations

xR "[LH*/Lj]T

jQ "![LH*/Lx]T (4)

and the boundary conditions

x (0)"x
0

x (t
&
)"x

&
(5)

where j (t)3Rn is the adjoint and H* (x, j)"L (x, u* (x, j))#jTf (x, u* (x, j)) is the Hamiltonian
evaluated at the optimal control u* (x, j)"argmin

u
H(x, j, u). Points p"(x, j) lie in the 2n-

dimensional Hamiltonian phase space, or more simply, the phase space. Since J and f (x, u) do not
depend explicitly on time, H* is constant along trajectories of equation (4). We use pR "G(p) as an
alternate expression for the Hamiltonian system in equation (4) and refer to G(p) as the
Hamiltonian vector "eld. G(p) is assumed to be continuously di!erentiable.
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The solution to a completely hyper-sensitive HBVP, when viewed as a trajectory in the phase
space, lies in a neighbourhood NLR2n of an equilibrium point pN of the vector "eld, i.e. of a point
pN such that G (pN )"0. The Hamiltonian nature of G dictates that the Jacobian J"LG/Lp
evaluated at pN will have eigenvalues that are symmetric about the imaginary axis in the complex
plane. For a completely hyper-sensitive HBVP, none of the eigenvalues lie on the imaginary axis.
Consequently, pN is a saddle point.

3. COMPLETELY HYPER-SENSITIVE HBVP

For su$ciently large values of t
&
, the HBVP of equation (4) is completely hyper-sensitive. The main

features of a completely hyper-sensitive HBVP are conveyed by the following example. These
features suggest an approximate three-segment solution.

3.1. Motivating example

Consider the following optimal control problem. Minimize the cost

J"P
t
&

0

(x2#u2) dt (6)

subject to the di!erential constraint

xR "!x3#u (7)

and boundary conditions

x(0)"1

x (t
&
)"1.5 (8)

Applying the "rst-order necessary conditions for optimality leads to the HBVP

xR "!x3!j/2, x (0)"1

j0 "!2x#3x2j, x(t
&
)"1.5 (9)

This is a completely hyper-sensitive HBVP for su$ciently large t
&
. The important features can

be seen by looking at the solution, both as a function of time and as a phase plane trajectory. The
solution was computed using the Sparse Optimal Control Software (SOCS) [2] and is shown in
Figures 1 and 2 for t

&
"(1, 3, 5, 10, 25). It can be seen that as t

&
increases, the solution attains the

aforementioned &take-o!', &cruise', and &landing' structure. Notice that x"0 is an equilibrium of
the open-loop system, thus no control e!ort is required to hold the system at x"0. The cost for
the equilibrium solution is zero. Therefore, x"0 is a desirable state (cruise condition) for the
system to be in. As t

&
increases, the control objective can be viewed as transitioning from &steering

the system from the initial conditions to the terminal conditions' to &steering the system from the
initial conditions to the equilibrium and then steering the system from the equilibrium to the
terminal conditions'. Strictly speaking, this transition never takes place. However, assuming such
a transition does occur, the problem can be decomposed into simpler subproblems; the associated
error decreases as t

&
increases.
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Figure 2. j (t) vs. t for example problem of equation (9); t
&
"(1, 3, 5, 10, 25)

Figure 1. x(t) vs. t for example problem of equation (9); t
&
"(1, 3, 5, 10, 25)

3.2. Phase-space structure

Figure 3 shows the solutions to the example HBVP as phase plane trajectories for
t
&
"(1, 3, 5, 10, 25). Also shown are the stable manifold W

4
(pN ) and the unstable manifold W

u
(pN ) of

the saddle point pN . W
s
(pN ) is composed of all the trajectories that approach pN as tPR while W

u
(pN )

is composed of all the trajectories that approach pN as tP!R. It can be seen that the solutions to
the example HBVP for t

&
"10 and t

&
"25 are indistinguishable from the trajectory formed by

W
4
(pN ) and W

6
(pN ). Both W

4
(pN ) and W

6
(pN ) are one-dimensional for the example. For an n-

dimensional state, they would each be n-dimensional. These manifolds are the non-linear analogs
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Figure 3. j vs. x for example problem of equation (9); t
&
"(1, 3, 5, 10, 25)

of the stable and unstable eigenspaces for a linear-time invariant system [18]. They are tangent to
the stable and unstable eigenspaces of the linearized dynamics at pN . The phase plane trajectories,
for su$ciently large t

&
, begin very near W

4
(pN ), proceed quickly adjacent to W

4
(pN ) toward pN , make

a slow turn in the vicinity of pN , and then proceed quickly away from pN adjacent to W
6
(pN ). The

initial boundary-layer segment lies closer and closer to W
4
(pN ) as t

&
increases; the terminal

boundary-layer segment lies closer and closer to W
6
(pN ) as t

&
increases.

3.3. Three-segment approximate solution

Consider the approximate composite solution p' given by

p'"G
p
4
(t), 0)t)t

*"-
pN , t

*"-
(t(t

&"-
p
6
(t), t

&"-
)t)t

&

(10)

where p
4
is the solution to equation (4) with initial condition p

4
(0)"(x

0
, j

0
) and j

0
chosen such

that p
4
(0)"(x

0
, j

0
)3W

4
(pN ); pN "(xN , jM ) is the equilibrium solution; and p

6
is the solution to

equation (4) with "nal condition p
4
(t
&
)"(x

&
, j

&
) with j

&
chosen such that p

6
(t
&
)"(x

&
, j

&
)3W

6
(pN ).

In words, the composite approximation is constructed by concatenating an initial boundary-layer
segment on the stable manifold, an equilibrium segment, and a terminal boundary-layer segment
on the unstable manifold [11, 17]. The durations of the initial and terminal boundary-layers,
t
*"-

and t
&
!t

&"-
, must be selected; they must be long enough to allow the boundary-layer segments

to reach the equilibrium to su$cient accuracy in forward and backward time, respectively.
Let p* denote the solution of interest to the HBVP given by equations (4) and (5). De"ne the

approximation error by

Ep'!p*E
=
" sup

t3[0,t
&
]

Ep' (t)!p* (t)E
2

(11)
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where E )E
2

denotes the standard Euclidean norm on R2n. If one is interested in a solution that
approximates p* to within a tolerance e and Ep'!p*E

=
(e, then the proposed p' is a candidate.

The options for determining p
4

are: (i) If n"1, then H* (x
0
, j

0
)"H* (x' , jK ) can be used to

determine j
0

given x
0
. Then p

4
can be determined by forward integration of equation (4). Because

of the restriction on n, this is not a general approach. (ii) Finding a small perturbation in the stable
eigenspace of pN from which backward integration leads to the point on W

4
that satis"es the initial

condition x"x
0
. (iii) W

4
could in principle be given by n algebraic equations in x and j and these

equations could be used to determine j
0

given x
0
. Then p

4
can be determined by forward

integration of equation (4). (iv) Separate the Hamiltonian vector "eld pR "G (p) into its stable and
unstable components G(p)"G

4
(p)#G

6
(p). Use the partial equilibrium condition G

6
(p

0
)"0 to

determine j
0

given x
0
. Then p

4
can be determined by forward integration of equation (4). These

options also apply to determining p
6

with the direction of time reversed.
A dichotomic basis method for implementing option (iv) has been presented by Rao and Mease

[8, 16, 17]. We consider this method further in the remainder of this paper. The dichotomic basis
method is the only one of the four options just mentioned that has potential for more general
multiple time-scale (partially hyper-sensitive) HBVPs. For partially hyper-sensitive problems,
there is a well-de"ned manifold structure and the concept of partial equilibrium conditions is still
appropriate [19]. Option (ii) is not appropriate because there is no saddle point. Option (iii) is
valid but it is not likely realizable.

4. APPROXIMATE DICHOTOMIC BASIS METHOD

We focus on developing a method for computing p
4
, because the same method will work for

p
6

simply by reversing time. In this section, the dichotomic basis and approximate dichotomic
basis methods are presented. These methods are reviewed here to set the stage for the new
developments presented in the following section.

4.1. Dichotomic Basis

Restricting our attention to completely hyper-sensitive HBVPs, at each point in the phase
space along the optimal trajectory p*, there is an n-dimensional contracting subspace and an
n-dimensional expanding subspace. This means that a neighbouring optimal trajectory that
begins in the contracting subspace will approach p* in forward time, while a neighbouring
optimal trajectory that begins in the expanding subspace will approach p* in backward time (i.e.
in forward time it will depart from p*). These subspaces in general vary in direction along p*. We
assume that this property also holds along trajectories in a neighbourhood N\R2n of p* and that
the approximate solution p' from equation (10) lies in N. Let the columns of the matrix
D(p)3R2n]2n form a continuously di!erentiable basis for R2n on N. A vector, such as G(p), in the
phase space can be written in terms of D as

G(p)"D(p)v(p) (12)

where the components of v3R2n are the components of G in the new basis. Di!erentiating along
p(t), we have

vR"(D~1JD!D~1DQ ) v""v (13)
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where J"LG/Lp is the Jacobian of G(p). D(p) is called a dichotomic basis in the neighbourhood N,
if the following two properties are satis"ed [8]:
1. For each p3N, "(p) has the block-triangular form

"(p)"C
"

s
(p) "

su
(p)

0 "
6
(p) D (14)

where "
4
(p)3Rn]n, "

6
(p)3Rn]n, and "

46
(p)3Rn]n.

2. Along any segment p
* t1 , t

2
] of a trajectory p of the Hamiltonian vector "eld G(p) lying in N, the

transition matrices 'p
4
(t, 0) and 'p

6
(t, 0) corresponding to "

4
and "

6
, de"ned such that

'p
4
(0, 0)"I and 'p

6
(0, 0)"I, satisfy the inequalities

E'p
4
(t, 0) ['p

4
(q, 0)]~1E)K

1
ED (p(q))EED~1(p(t))Ee~a(t~q), t

2
't*q't

1
(15)

E'p
6
(t, 0) ['p

6
(q, 0)]~1E)K

1
ED(p(q))EED~1 (p(t))Ee~a(q~t), t

1
)t)q(t

2
(16)

where K
1
'0 and a'0 are scalars that can vary on N. This property ensures that 'p

4
con-

tracts vectors exponentially in forward time while 'p
6

contracts vectors exponentially in
backward time. Since we are working with "nite time intervals, it is important that the
exponential bounds are tight at t"q. See Reference [8] for further details.
A dichotomic basis decouples the expanding dynamics from the contracting dynamics. Denot-

ing contracting (stable) and expanding (unstable) by the subscripts &s' and &u', respectively,
a dichotomic basis can be split as

D (p)"[D
4
(p) D

6
(p)] (17)

where the columns of D
s
(p)3R2n]n span the contracting subspace and the columns of

D
u
(p)3R2n]n span the expanding subspace. Correspondingly, the vector v splits as

v"C
v
s

v
u
D (18)

where v
4
3Rn and v

u
3Rn.

For a point p on the stable manifold W
4
, D

4
(p) coincides with the tangent space to W

4
. Because

W
4
is an invariant manifold [18], G (p) must lie in the column span of D

4
(p) for p3W

4
. It follows

that the components v
6
(p) of G(p) must be zero for p3W

4
. If the di!erential equations for v are

adjoined to the di!erential equation for p and G(p) is represented in the dichotomic basis D, we
have

pR
vR
s

vR
u

"

D
4
(p) D

6
(p)

"
s
(p) "

46
(p)

0 "
6
(p)

C
v
s

v
u
D (19)

If equations (19) and (4) are initialized consistently, their solutions will be identical. It is clear from
the structure of the system in equation (19) that if v

6
is initially zero it will remain zero. Because

v
6
is the projection of G(p) into the unstable subspace at a point p, the only way to make v

6
zero is

to choose p properly. In particular, if p is chosen to lie in W
4
, then v

6
will be zero. At the initial

time, because x (0)"x
0

is speci"ed, it is j (0) that is adjusted to make v
6

zero such that
p(0)"(x

0
, j(0))3W

4
.
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With v
6
"0, equation (19) reduces to

pR "D
4
(p)v

4

vR
4
""

4
(p)v

4
(20)

Using the notation p(0)"(x (0), j(0))"p
0
, the solution p

4
(t) is found by integrating equation (20)

with the initial conditions

x (0)"x
0

j (0) found from solving v
6
(0)"Ds

6
(p

0
)G(p

0
)"0 (21)

v
4
(0)"Ds

4
(p

0
)G(p

0
)

where Ds
s
(p)3Rn]2n and Ds

6
(p)3Rn]2n are the "rst and second, respectively, n rows of D~1 :

D~1(p)"C
Ds

4
(p)

Ds
6
(p)D (22)

Any value of p
0

that satis"es the equation Ds
6
(p

0
)G (p

0
)"0 implies that j (0) lies in the stable

manifold of pN at x(0). Integrating equation (20) from t"0 to t"t
*"-

so that Ep (t
*"-

)!pN E(e,
where e'0 is a speci"ed tolerance, produces the initial boundary-layer approximation p

4
.

4.2. Approximate dichotomic basis method

In this subsection, we describe a method for constructing p
4
using a basis that only approxim-

ately decouples the stable and unstable dynamics. We begin by de"ning an approximate
dichotomic basis.

Let A(p)"[A
4
(p)A

6
(p)] be a non-dichotomic basis on N where A

4
(p)3R2n]n and

A
6
(p)3R2n]n. Furthermore, let A~1 (p) be written in terms of the two matrices As

4
(p)3Rn]2n and

As
u
(p)3Rn]2n such that

A~1 (p)"C
As

4
(p)

As
6
(p)D (23)

and let h represent the co-ordinate vector for the basis A with n-dimensional components h
4

and h
6

h"C
h
4

h
6
D (24)

In terms of A(p), the di!erential equations for p and h are

pR
hQ
4

hQ
6

"

A
4
(p) A

6
(p)

"
s
(p) "

46
(p)

"
64

(p) "
6
(p)

C
h
4

h
6
D (25)

where

""C
"

4
(p) "

46
(p)

"
64

(p) "
6
(p)D"A~1JA!A~1AQ (26)
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Let !p
4
(t, 0) and !p

6
(t, 0) be the transition matrices of "

4
and "

6
, respectively, from equation (26).

Because the columns of A(p) form a non-dichotomic basis, in general, the transition matrices
!p
4
(t, 0) and !p

6
(t, 0) have both contracting and expanding behaviour along trajectory segments in

N and "
64

(p)O0 for p3N. In terms of the dichotomic and non-dichotomic bases, the vector G(p)
can be written as

G(p)"D
4
(p)v

4
#D

6
(p)v

6
"A

4
(p)h

4
#A

6
(p)h

6
(27)

Suppose we attempt to place the initial point p
0
on the stable manifold by choosing j (0) so that

h
6
(0)"0. Because the basis "eld A is non-dichotomic, the calculated initial point will not be on

the stable manifold. The size the unstable component v
u
is a measure of the error. The unstable

components of G at the beginning and end of the trajectory are

v
6
(0)"Ds

u
(p

0
)A

4
(p

0
)h

4
(0) (28)

and

v
6
(t
*"-

)"'p
6
(t
*"-

, 0)Ds
6
(p

0
)A

4
(p

0
)h

4
(0) (29)

The norm of v
6
(t
*"-

) can be bounded by

Ev
6
(t
*"-

)E"E'p
6
(t
*"-

, 0)Ds
6
(p

0
)A

4
(p

0
)h

4
(0)E)E'p

6
(t
*"-

, 0)E EDs
6
(p

0
)A

4
(p

0
)E Eh

4
(0)E (30)

where E'p
6
(t
*"-

, 0)E and EDs
6
(p

0
)A

4
(p

0
)E denote matrix norms induced by the vector norm. Note

that EDs
6
(p

0
)A

4
(p

0
)E determines the size of v

6
and is a measure of how well the basis A approxim-

ates the dichotomic basis D at point p
0
, because EDs

6
(p

0
)D

4
(p

0
)E"0. In general E'p

6
(t, 0)E is

exponentially increasing with t; thus, the size of t
*"-

relative to the rate of growth determines how
small EDs

6
(p

0
)A

s
(p

0
)E must be. The key bene"t of the composite approximation approach is that

error growth, an inherent feature of integrating a Hamiltonian system, is only taking place over
the time interval t

*"-
, which is much smaller than t

&
. The factor EDs

6
(p

0
)A

4
(p

0
)E provides

additional attenuation of the growing component of the solution.
Suppose that A(p) is an approximate dichotomic basis and that the h

6
()) component of G(p) is

known along the desired trajectory p
4
over the time interval [0, t

*"-
]. Then, using h

6
( ) ) as an input,

the trajectory can be found by integrating the system of equations

C
pR
hQ
s
D"C

A
4
(p) A

6
(p)

"
4

"
46
D C

h
s

h
6
D (31)

in forward time with the initial conditions

x (0)"x
0

j (0) found from solving As
6
(p

0
)G(p

0
)"h

6
(0)

h
4
(0)"As

4
(p

0
)G(p

0
)

(32)

Similarly, given x (t
*"-

)"x
*"-

and using h
4
( ) ) as an input, the trajectory can be found by integrating

the system of equations

C
pR
hQ
6
D"C

A
4
(p) A

6
(p)

"
64

"
6
DC

h
4

h
6
D (33)
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in backward time with the terminal conditions

x (t
*"-

)"x
*"-

j(t
*"-

) found from solving As
4
(p (t

*"-
))G(p(t

*"-
))"h

4
(t
*"-

)

h
6
(t
*"-

)"As
6
(p(t

*"-
))G(p (t

*"-
))

(34)

However, since neither h
4
nor h

6
along p

4
is known a priori, we will solve equations (31)}(34) by

a successive approximation approach given by Algorithm 1.

Algorithm 1

Let A(p) be an approximate dichotomic basis in the neighbourhood N. Choose a convergence
level d'0 and a matching tolerance e'0.

(i) Choose t
*"-

and h
6
( )) on t3[0, t

*"-
] (h

6
()),0, for example).

(ii) Generate the initial conditions at t"0 using equation (32).
(iii) Integrate equation (31) forward from t"0 to t"t

*"-
using h

6
()) from (i) on "rst iteration or

the value of h
6
()) obtained from (v) on subsequent iterations.

(iv) Generate the terminal conditions from equation (34) using x (t
*"-

)"x
*"-

and h
4
(t
*"-

) from
the forward integration in the previous step.

(v) Integrate equation (33) backward from t"t
*"-

to t"0 using h
4
()) from (iii).

(vi) Repeat (iii)}(v) until Ep(k)(t
*"-

)!p(k~1)(t
*"-

)E(d where p(k) ()) is the kth iterate of (v). If
Ep(k) (t

*"-
)!pN E(e, then stop. Otherwise, start again at step (i) with a larger value of t

*"-
.

5. COMPUTING AN APPROXIMATE DICHOTOMIC BASIS

Algorithm 1 can be used if an approximate dichotomic basis is known a priori; however, this is not
usually the case. In this section we describe a method that computes an approximate dichotomic
basis in conjunction with Algorithm 1. The strategy proposed here is similar to the strategy used
in the computational singular perturbation (CSP) methodology for sti! initial value problems
[12, 13].

5.1. Approximate dichotomic basis using eigenvectors

The Jacobian J(p) of the Hamiltonian vector "eld G(p) has the form

J (p)"C
F(p) !K(p)

!Q(p) !FT (p)D (35)

where F (p)3Rn]n, K(p)3Rn]n, and Q(p)3Rn]n . Let the columns of the matrix A(p)3R2n]2n be
the eigenvectors of J (p). Because the equilibrium solution pN "(xN , jM ) is a saddle point, J (pN ) has no
eigenvalues on the imaginary axis and A(pN ) can be split as A(pN )"[A

4
(pN )A

u
(pN )] where column

span MA
4
(pN )N is the n-dimensional stable eigenspace and column span MA

6
(pN )N is the n-dimensional

unstable eigenspace. On the equilibrium solution, pN , the term A~1AQ ,0 and the matrix " (pN ) has
the form

" (pN )"A~1 (pN ) J (pN )A(pN )"C
!Z 0

0 ZD (36)
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where the eigenvalues of Z are in the open right-half of the complex plane. Consequently, the
eigenvectors of J (pN ) form a dichotomic basis along the equilibrium solution pN .

If the following requirement about the eigenvalue structure of J(p) is met for all p3N,

Requirement 1

At every point p3N, the eigenvalues of the Jacobian matrix J(p) lie o! the imaginary axis.

Then the eigenvectors of J (p) may provide an e!ective approximate dichotomic basis for points
in N. Requirement 1 ensures that the Jacobian has well-de"ned stable and unstable
eigen-directions at every point p3N. The eigenvectors have been used as a "rst approximation
to decouple slow and fast modes when solving sti! initial value problems in chemical kinetics
using the computational singular perturbation (CSP) methodology [12, 13]. Similarly, the eigen-
vectors are used here to approximately decouple the contracting and expanding dynamics of an
Hamiltonian system. A strategy is now developed to construct an approximate dichotomic basis.

The eigenvector matrix A(p) of J (p) can be split so that A(p)"[A
4
(p)A

6
(p)] where the columns

of A
4
(p) are the eigenvectors corresponding to the eigenvalues with negative real parts and the

columns of A
6
(p) are the eigenvectors corresponding to the eigenvalues with positive real parts. In

the case of repeated and/or complex conjugate eigenvalues, generalized real eigenvectors are used
(e.g. a complex conjugate pair of eigenvectors v

R
$iv

I
are replaced by the two real vectors v

R
and

v
I
, respectively). Along a trajectory p ()), the eigenvector basis does not decouple the contracting

and expanding behaviour because, while A will block-diagonalize A~1JA, the term A~1AQ will in
general not be zero and " of equation (26) will have non-zero o!-diagonal blocks.

One possibility is to use the eigenvectors to form an approximate dichotomic basis along
a trajectory p ()). However, this strategy is computationally intensive. More importantly, continu-
ous re-computation of the eigenvectors is not required. Instead, it is possible to divide the time
interval [0, t

*"-
] into several subintervals and use a "xed eigenvector basis over each subinterval.

This leads to the following piecewise constant basis. Let Mt
1
, 2, t

N
N be values of t3[0, t

*"-
] where

the eigenvectors are computed and let t
N`1

"t
*"-

. Furthermore, let Mp(t
1
), 2 , p(t

N
)N"

Mp
1
, 2 , p

N
N be points along p ()). For each subinterval, [t

i
, t

i`1
], i"1, 2, 2, N, the eigenvectors

of J (p
i
) are used as a basis. Consequently, A(p) has the form

A(p (t))"A(p
i
), t3[t

i
, t

i`1
], i"1, 2 , N (37)

Moreover, along each subinterval [t
i
, t

i`1
], the term A~1AQ ,0 and the matrix " of equation (26)

has the form

""A~1 (p(t))J (p(t))A(p(t)), i"1, 2, N (38)

where A(p (t)) is obtained from equation (37). " is not block-diagonal in general because J (p)
changes along p (t). The number of times N that the basis vectors should be changed is highly
problem dependent. Each subinterval can have a di!erent length.

5.2. Initialization and switching strategy

The eigenvector basis is initialized as follows. First, an initial h
6

pro"le on [0, t
*"-

] is chosen;
h
6
(t),0 is a reasonable choice if the eigenvectors provide an accurate approximation to
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a dichotomic basis. Then, j (0) is found by solving

As
6
(p

0
)G(p

0
)"h

6
(0) (39)

which gives p
0
"(x(0), j (0)). The initial eigenvector matrix A(p

0
) is determined while solving for

j(0)) since As
6
is needed in equation (37). With p

0
and A(p

0
) determined, h

4
(0)"As

4
(p

0
)G(p

0
) and

equation (31) can be integrated forward, switching to a new eigenvector basis at the chosen times.
At an eigenvector switch point, it is necessary to restart the integration because there may be

discontinuities in h
4
and h

6
. Let t

48
be an eigenvector switch time and let ())~ and ())` denote the

left and right limits of a variable at t
48

, respectively. During a switch, the value of p (t) is
continuous, i.e. p~ (t

48
)"p`(t

48
)"p (t

48
). When integrating equation (31) forward in time, the

values of h~
4

(t
48

) and h`
4

(t
48

) are given, respectively, by

h~
4

(t
48

)"(As
4
)~G(p(t

48
)) (40)

and

h`
4

(t
48

)"(As
4
)`G(p(t

48
)) (41)

Because (As
4
)~O(As

4
)`, in general h~

4
(t
48

)Oh`
4

(t
48

). The value h`
4

(t
48

) is used as a starting
condition for the next subinterval. Similarly, when integrating equation (33) backward in time, the
values of h~

6
(t
48

) and h`
6

(t
48

) are given, respectively, by

h~
6

(t
48

)"(As
6
)~G(p(t

48
)) (42)

and

h`
6

(t
48

)"(As
6
)`G(p(t

48
)) (43)

After the switch, the value h~
6

(t
48

) is used as a starting condition for the next subinterval of t.
Because of the successive approximation approach we are using, computing h

4
during the forward

integration and h
6
during the backward integration, there can be discontinuities in pR at the switch

times while the solution is converging; however, if and when the solution has converged, pR will be
continuous, because G(p) is continuously di!erentiable by assumption.

5.3. Eigenvector approximate dichotomic basis method

Using the piecewise constant eigenvector basis, Algorithm 1 can be modi"ed to give Algorithm 2
as follows. Requirement 1 must be satis"ed for the algorithm to be viable.

Algorithm 2

Choose a convergence level d'0 and a matching tolerance e'0.
(i) Choose t

*"-
, h

6
()) on t3[0, t

*"-
] (h

6
()),0, for example), and times t

*
3[0, t

*"-
],

i"1, 2, 2 , N, to switch the eigenvectors.
(ii) Generate the initial conditions at t"0 using equation (32). The initial eigenvectors A (p

0
)

of J (p
0
) are determined in the process.

(iii) Integrate equation (31) forward from t"0 to t"t
*"-

using h
6
()) from (i) on "rst iteration or

the value of h
6
()) obtained from (v) on subsequent iterations. Compute a new set of

eigenvectors A(p(t
i
)), i"1, 2, 2 , N, along the trajectory.

(iv) Generate the terminal conditions from equation (34) using x (t
*"-

)"x
*"-

and h
4
(t
*"-

) from
the forward integration in the previous step.

HYPER-SENSITIVE OPTIMAL CONTROL PROBLEMS 13
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(v) Integrate equation (33) backward from t"t
*"-

to t"0 using h
4
()) from (iii) and the

previously computed piecewise constant A(p())). Whenever a switch point is encountered,
re-initialize h

6
according to equation (42).

(vi) Repeat (iii)}(v) until Ep(k) (t
*"-

)!p(k~1) (t
*"-

)E(d where p(k) ()) is the k5) iterate of (v). If
Ep(k)(t

*"-
)!pN E(e, then stop. Otherwise, increase t

*"-
and repeat (ii)}(v).

6. APPLICATION OF METHOD

Algorithm 2 is now applied to the example HBVP of equation (9) to obtain the boundary-layer
solutions p

4
and p

6
. The composite approximation is constructed by concatenating p

4
and p

6
with

the equilibrium solution. For both p
4
and p

6
, a matching tolerance of e"10~3 and a convergence

level d"10~3 are used. The numerical integration is done in MATLAB using the integration
routine ode113. To obtain p

6
, Algorithm 2 is applied to a time-reversed version of the dynamics.

Letting p"t
&
!t and denoting di!erentiation with respect to p by ())@, we have

x@"x3#j/2

j@"2x!3x2j (44)

The terminal boundary-layer solution thus obtained can be transformed back to a function of
t using t"t

&
!p for any desired value of t

&
.

To obtain p
4
(t)"(x

4
(t), j

4
(t)), the initial value j (0)"j

0
is found by solving equation (39) which

gives a starting value j (0)"1.0704. The eigenvalues of J (p
0
), where p

0
"(x

0
, j

0
)"(1, 1.0704), are

Mk
1
, k

2
N"M2.606, !2.606N. Based on these local eigenvalues and those at the equilibrium point,

we chose t
*"-
"¹"20. It was found that changing the eigenvectors at t"0, 2, 4, 6, and 8 was

su$cient. Furthermore, a new set of eigenvectors was computed after iterations 1 and 10. For this
problem, 20 iterations were required to meet the speci"ed convergence level. Figures 4 and 5 show
x(t) vs. t and j (t) vs. t, respectively, for iterations 1, 10, and 20 (iteration 20 is the converged
trajectory). It is seen that each iterate levels o! as tPt

*"-
, indicating that the unstable component

of G has been su$ciently eliminated. Moreover, the discontinuity in pR
s
, evident during the early

iterations, disappears by iteration 20.
To obtain p

6
(p)"(x

6
(p), j

6
(p)), the solution of equation (37) is j (0)"!11.632. The eigen-

values of J (p
0
), where p

0
"(1.5, !11.632), are Mk

1
, k

2
N"M9.95, !9.95N. Based on these local

eigenvalues and those at the equilibrium point, we chose t
&
!t

&"-
"p

&"-
"¹"20. For this

problem it was found that changing the eigenvectors at q"0, 3, 6, 9, 12, and 15 was su$cient.
Furthermore, a new set of eigenvectors was computed after iterations 1 and 10. For this problem,
20 iterations were required to meet the speci"ed convergence level. Figures 6 and 7 show x (p) vs.
p and j (p) vs. p, respectively, for iterations 1, 10, and 20 (iteration 20 is the converged trajectory).
Similar to the results for p

s
, each iterate levels o! as pPp

&"-
and the discontinuity in p@

6
, evident in

the early iterations, disappears by iteration 20.
Using the converged solutions for p

4
and p

6
with p

6
transformed back to a function of t, the

composite approximation is constructed for t
&
"100. The results for other su$ciently large

values of t
&
are essentially similar; the only di!erence is the duration of the equilibrium segment.

The initial boundary-layer segment p
4
is used on the interval t3[0, 20], the equilibrium segment

is used on the interval t3[20, 80], and the terminal boundary-layer segment p
6

is used on the
interval t3[80, 100]. Figures 8 and 9 show the composite approximations for x (t) vs. t and j (t) vs.
t, respectively. If the composite approximations were plotted alongside the solutions generated
using SOCS, the di!erence would be virtually indistinguishable.

14 ANIL V. RAO AND KENNETH D. MEASE

Copyright ( 2000 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2000; 21:1}19



Figure 4. Solution iterates of x
4
(t) vs. t for the initial boundary-layer of the example problem of equation (9) using

Algorithm 2

Figure 5. Solution iterates of j
4
(t) vs. t for initial boundary-layer of the example problem of equation (9) using

Algorithm 2

7. DISCUSSION OF METHOD

The example problem conforms to Requirement 1; in a region of the (x, j) plane su$ciently large
to contain the composite solution and the iterates that led to it, the eigenvalues of J (p) are real
and non-zero. Furthermore, the fact that all solution iterates level o! shows that the hyper-
sensitivity has been eliminated over the time interval of interest.
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Figure 6. Solution iterates of x
6
(p) vs. p for the "nal boundary-layer of the example problem of equation (9) using

Algorithm 2

Figure 7. Solution iterates of j
6
(p) vs. p for the terminal boundary-layer of the example problem of equation (9) using

Algorithm 2

Compared with a constant basis, the piecewise constant basis better approximates the local
contracting and expanding directions. Algorithm 2 was "rst applied to obtain p

4
and p

6
using

a constant eigenvector basis from J(p
0
) (results not presented). It was found that Algorithm 1 did

not converge for p
4
, while the convergence of Algorithm 1 in computing p

6
was extremely slow (of

the order of 1000 iterations for a constant basis as opposed to the 20 iterations using a piecewise
constant basis).
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Figure 8. Composite trajectory for t
&
"100 of x(t) vs. t for the example problem of equation (9) using the converged initial

boundary-layer solution x
4
(t) on the interval t3[0, 20], the equilibrium solution xN on the interval t3[20, 80], and the

terminal boundary-layer solution x
6
(t) on the segment t3[80, 100].

Figure 9. Composite trajectory for t
&
"100 of j(t) vs. t for the example problem of equation (9) using the converged initial

boundary-layer solution j
4
(t) on the interval t3[0, 20], the equilibrium jM on the interval t3[20, 80], and the terminal

boundary-layer solution j
6
(t) on the segment t3[80, 100]

Comparing the required basis vector switch times with the curvature of the stable and unstable
manifolds (see Figure 3), we "nd a direct correlation. The basis needs to be updated more
frequently when the manifold being tracked is changing direction in the phase space, suggesting
that the switching strategy should incorporate information about the curvature of the manifold.
The development of such a switching strategy is beyond the scope of this paper.
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Requirement 1 is not generally met by completely hyper-sensitive HBVPs. For the example
system, there are regions of the phase space where the requirement is not met. Hence, using local
eigenvectors is not always applicable. The dichotomic basis method can still be applied, but the
approximate dichotomic basis must be determined di!erently.

One needs some a priori knowledge that an optimal control problem is completely hyper-
sensitive before the dichotomic basis method should be applied. This knowledge can come from
a solution obtained by a direct method. If the solution has the characteristic take-o!, cruise,
landing structure, then the dichotomic basis method is applicable. Also, the particular saddle
point that is in#uencing the nature of the solution can be identi"ed. Completely hyper-sensitive
HBVPs can involve multiple saddle points and (hetero-clinic) orbits that connect them. The
solution from a direct method can be used to identify such structure and the basic approach
considered in this paper can be adapted to handle it.

A motivating reason for using the dichotomic basis method is to gain insight into the phase
space manifold structure in the neighbourhood of the optimal solution. A dichotomic basis
provides this information. It identi"es the contracting and expanding subspaces at points in the
phase space. It provides conditions satis"ed by points on the stable and unstable manifolds. With
an approximate dichotomic basis, the HBVP can be solved by our iterative algorithm, but the
information on the manifold structure is only approximate. Once the approximate solution has
been determined, the size of the h

6
component of G along the initial boundary-layer segment and

the size of the h
4

component of G along the terminal boundary-layer segment indicate how
accurately the basis approximates a dichotomic basis. If the accuracy is not su$cient, the
eigenspaces at pN can be propagated along the initial and terminal boundary-layer segments using
a di!erential Riccati equation [8]. Another option is to compute a dichotomic basis at one or
more points along the approximate solution using Lyapunov exponents and the associated
direction vectors [20].

8. CONCLUSIONS

A version of the dichotomic basis method for solving completely hyper-sensitive Hamiltonian
boundary-value problems has been developed in which local eigenvectors are used to construct
an approximate dichotomic basis. An iterative algorithm was given for computing the initial and
terminal boundary-layer segments which when combined with an equilibrium segment form
a composite approximate solution. The method was illustrated on a simple example.

Although the class of completely hyper-sensitive problems is restrictive, it is an important step
to solving the large class of multiple time-scale optimal control problems with fast boundary and
interior layers. A dichotomic basis can be used to compute composite approximate solutions for
this class of problems. The challenge is to develop a way to generate a su$ciently accurate
approximation to a dichotomic basis. Constructing an approximate dichotomic basis from local
eigenvectors is one approach, but it is not always applicable; other methods must be developed.
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