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Abstract. The indirect method of solving optimal coatrol problems requires the solution of a
Hamiltonian boundary-value problem (HBVP). Geometric properties of Hamiltonian systems and
the notion of a dichotomy guide the development of a solution approach for HBVPs that involve two

distinct time scales and boundary layers.
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1. INTRODUCTION

The methods for solving optimal control problems
are usually classified as direct or indirect. Indirect
methods involve determining extremals by solving
the Hamiltonian boundary-value problem posed
by the first-order necessarv conditions. Hamil-
tonian systems have the following property: the
closure of an open set of initial conditions in the
state-costate space propagated forward in time ac-
cording to the Hamiltonian differential equations
will maintain constant “volume”. If the set is con-
tracting in some directions. it is expanding in an
equal number of other directions. Thus, any solu-
tion method that involves integration with initial
conditions (or final conditions) that are in error
will be plagued by error amplification in certain
directions. The usual statement is that indirect
methods require good initial estimates due to the
high sensitivity. The sensitivity is especially prob-
lematic if the Hamiltonian dynamics evolve on two
or more disparate time scales.

The solution approach studied in this paper uti-
lizes a transformation to decouple the expanding
and contracting behavior, so that the solution to
the Hamiltonian boundary-value problem can be
constructed by integrating the contracting part of
the solution in forward time and the growing part
of the solution in backward time. In this way,
errors are not amplified and an iterative solution
scheme can converge. The decoupling transfor-
mation is constructed from solutions to a differ-
ential Riccati equation. The use of decoupling
transformations for linear boundary-value prob-
lems is well-known in the numerical analysis lit-
erature, see e.g. O'Malley and Anderson (1982)
and Ascher et al. (1988' Our use of decou-

pling transformations for nonlinear Hamiltonian
boundary-value problems is inspired by the Com-
putational Singular Perturbation (CSP) method
of Lam (1993, 1994) and its geometric interpreta-
tion by Mease (1995). Our work has also benefited
from the ideas and results of Kokotovic and col-
leagues summarized in Kokotovic et al. {1986).
Previous consideration of the application of the
CSP method to optimal control problems can be
found in Ardema (1990).

For the case when the Hamiltonian system, in the
region of the state-costate space of interest, ex-
hibits boundary-layer tvpe, two time-scale behav-
ior. the conceptual basis for an approximate nu-
merical solution method is described. The method
is motivated by the analytical method of matching
asymptotic expansions for singularly perturbed
boundary-value problems, but does not require
the Hamiltonian system to be in the so-called
standard form (see Kokotovic et al., 1986). The
solutions of a special class of two time-scale prob-
lerns can be constructed from the solutions to two
nornlinear infinite horizon regulator problems. An
algorithm for solving such regulator problems is
given. See also Rao and Mease {1995a,b) for the
presentation of a variation of this algorithm and
sorne numerical experience.

2. HAMILTONIAN BOUNDARY-VALUE
PROBLEM

The optimal control problem to be considered is:
Find the piecewise continuous control u that min-
imizes the scalar cost
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subject to the differential constraint on the state
x and control

z = f(x,u) (2)

the initial condition z(0) = zg, and the termi-
nal condition z(ty) = xzy. Let z(t) € R* and
u(t) € R™. The first-order necessary conditions
for a weak or strong local minimum lead to a
Hamiltonian boundary-value problem (HBVP) for
the extremal trajectories. The HBVP is composed
of the Hamiltonian differential system
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and the boundary conditions

z(0) = =zo (4)
x(ty) = zy (5)

where A(t) € R™ is the costate, taken here to
be a row vector, and H(z,\) = L{z,u{z.)}) +
Af{xz,u{z, A)) is the optimal Hamiltonian. We as-
sume that H is a smooth function of z and A. The
z-space.and the (z,A)-space are referred to here as
the state space and the phase space, resp.

The focus of our attention is on the HBVP. Al-
though the specifics of the approach to be dis-
cussed are given for the HBVP corresponding to
the above form of optimal control problem, the
general approach is applicable to HBVPs corre-
sponding to other forms of optimal control prob-
lems as well.

3. SUPPORTING THEORY

Liouville’s theorem (discussed e.g. in Gucken-
heimer and Holmes, 1983) states that the diver-
gence of a vector field is zero if and only if the
corresponding flow preserves volume. The right-
hand-side of Eq. (3) is a vector field on the phase
space in that it assigns a 2n-dimensional vector
to each point {z, ) in the phase space. For a dy-
namical system of the general form

p(t) = flp(t)) (6)

where p(t) € R?", the divergence of the vector
field is

dmf:}_:af’f (7)

A consequence of the Hamiltonian form of vector
field in Eq. (3) is that

div ( _ﬁ;;x )
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Thus Liouville’s theorem tells us that the flow cor-
responding to the vector field of Eq. (3) preserves
volume. The terms flow and volume arise from
an anology with fluid dynamics. Consider a set
S C R? defined as the closure of an open, con-
nected set of initial phase points. A consequence
of Liouville’s theorem is that, if the flow contracts
S in some directions, there will be an equal num-
ber of directions in which it expands S. This is
the fundamental property of a Hamiltonian sys-
tem that can make a HBVP difficult to solve nu-
merically.

By considering the linearized motion about a ref-
erence trajectory, one can more precisely charac-
terize the contracting and expanding behavior us-
ing the notion of a dichotomy (see Ascher et al
(1988) or Koketovic et al. (1986)). For a dynam-
ical system of the general form in Eq. (6), the
variational equation takes the form

Sp(t) = ff)—g(pm;épm 9

Let & denote the transition matrix with initial
condition ®(0) = I that satisfies the variational
equation along a particular trajectory p(-). The
variational equation along this trajectory has an
ezponential dichotomy on an interval [0,tf], if
there exist a constant projection matrix I of rank
r,0 < r < 2n, a positive constant K of moderate
size, and positive constants ¢ and g, such that
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“Moderate size” means that K should not be large
enough to accommodate exponentially increasing
motion in inequalities (10) and (11).

The variational equations corresponding to the
Hamiltonian system in Eq. (3) are
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We assume that variational equation for the
Hamiltonian system has an exponential di-
chotomy. The Hamiltonian nature of the above

variational equation further dictates that & = n
and that ¢ and u can be taken as equal.

A transformation that one-way decouples the con-
tracting and expanding components of the motion
can be achieved by a basis of the form
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for expressing the phase tangent vector (6x,0A)
in the new coordinates (6z,w,), where P is the
positive semi-definite solution to the differential
Riccati equation

P=—-PH); — H;»P — PH»P — Hzx  (14)
A boundary condition for P will be specified later.

For the general linear time-varying coordinate
transformation §p = Av, the transformed varia-
tional equations in the new coordinates are

v = (BJA - BAWw (15)

where the columns of A are the basis vectors, B =
Al and J = % is the Jacobian matrix. For the
specific transformation introduced in Eq. (13), we

have
A = (1‘2 ?) (16)
B = (fp ‘}) (17)

In terms of the new coordinates, the variational
equations are

(&) -

Hy. + Hy,P Hix bz (18)
0 —(Hxz + HuP)T Wy

Note that a tangent vector {§z,w,) for which w, is
zero initially will remain in the subspace given by

span (é), when propagated along an extremal

trajectory according to the variational equations,
due to the zero off-diagonal block.

4. SOLUTION OF TWO TIME-SCALE HBVPs

We consider the situation where the length of the
timne interval, boundary conditions and dynamics
are such that the optimal trajectory in the phase
space — the (x, ) space — has a boundary-layer
type two time-scale structure. The boundary-
laver type, two time-scale behavior implies that
there is a splitting of the Hamiltonian vector field
into slow, fast-stable and fast-unstable compo-
nents.
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‘See Fenichel (1979) for the geometry of two time-
scale systems. His theory is also discussed in
Mease (1995).) We do not consider the case of
fast oscillatory behavior that persists throughout
the time interval or the presence of turning points.

The trajectory has three qualitatively distinct seg-
ments. The trajectory exhibits fast changes near
the initial and final times, referred to as the initial
and terminal boundary layers, respectively. The
fast-stable component of the vector field will decay
to zero quickly in forward time and only influence
the traiectory in the initial boundary layer. The
fast-unstable component of the vector field will
decay to zero quickly in backward time and only
influence the trajectory in the terminal boundary
layer. Over most of the time interval, i.e., in be-
tween the boundary layers, the trajectory will be
dictated by the slow component of the vector field.
The terms slow and fast describe not only the rel-
ative rates of change of the trajectory in various
regions of the time interval, but also the rates rel-
ative to the length of the time interval. The split-
ting that is appropriate for a given time interval
may not be so for a longer or shorter time interval.

If the Hamiltonian system can be represented in
standard form, the solution method of matched
asvmptotic expansions can be applied (see Kel-
lev (1973) and Ardema (1976) and references
therein). Our objective is to develop a solution
method that applies to a two time-scale Hamil-
tonian system of arbitrary form. One strategy
would be to seek a phase variable transformation
that puts the system in standard form. Our strat-
egv is to seek a (state-costate dependent) basis
for the vector field that vields the desired split-
ting. Le., we continue to use (x, A} for the phase
variables, but define alternative phase rate vari-
ables to (z, ) that at least approximately yield
the desired splitting. The dichotomy transforma-
tion plays a central role.

4.1. hgow = 0 Case

The simplest case to treat is when there is only
fast behavior, i.e., the case hyp = 0. The slow
solution in this case is a constant equilibrium
solution (z.,\.) satisfying hgs(ze,Ae) = 0 and
hgu{z.,Ae) = 0. Let us assume that f{ze,0) =0.
As pointed out for example by Kokotovic et al.
(1986}, the optimal control problem can be solved
as two infinite horizon optimal regulator prob-
lems. For initial and terminal conditions incon-
sistent with the equilibrium solution, one optimal
regulator drives the initial state to the equilibrium
in forward time; another optimal regulator drives
the terminal state to the equilibrium in backward
tirne.

The Hamiltonian nature of the vector fleld and
the boundary layer solution structure require the
equilibrium to be of saddle type. A saddle type
equilibrium has a stable manifold and an unstable
manifold. (See Guckenheimer and Holmes (1983)
for background.) The approximate solution we



are proposing is constructed by piecing together
(not smoothly) a trajectory on the stable manifold
and a trajectory on the unstable manifold. These
trajectories are the solutions for particular initial
and terminal conditions to the initial and terminal
regulator problems respectively. These solutions
can be computed as follows.

4.2. Backward Sweep Procedure for Infinite-
Horizon Nonlinear Regulator Problem

To compute the solution to the initial regulator
problem, the strategy is to establish an extremal
on the stable manifold using knowledge of the sta-
ble eigenspace at the equilibrium and then to suc-
cessively compute neighboring extremals on the
stable manifold. leading to the one that satisfies
the prescribed initial condition. Each required in-
termediate initial condition is computed as a per-
turbation in the tangent space to the stable man-
ifold at the previous initial condition. This tan-
gent space is identified using the solution to the
differential Riccati equation with boundary con-
dition consistent with the stable eigenspace at the
equilibrium. Error growth during the forward in-
tegration of extremals on the stable manifold is
avoided by removing the unstable component of
the vector field. A description of the algorithm
follows. The trajectory on the unstable manifold
is computed using the same method and reversing
time so that the terminal condition is considered
an initial condition.

Step 1. Getting on the stable manifold. Per-
turb slightly the phase vector (state-costate vec-
tor) away from the equilibrium in the stable
eigenspace.

Step 2. Initial backward integration. Integrate
from this point backward in time. Stop the inte-
gration when the phase is as close to the hyper-
plane z = zo as possible. Also integrate simulta-
neously the differential Riccati equation backward
from the condition P(t}) = P where P is the so-
Iution to the algebraic Riccati equation with ma-
trices evaluated at the equilibrium and tg} is an
arbitrary starting time for the integration.

Step 3. Forward Integration. Let the time range
for the backward integration be t% to 3, with
t% > t§. Adjust the “initial” state x(t8) by a small
increment 8z toward zo and adjust the “initial”
costate by A = P(t5)éx. Integrate forward

d (= [T o\ /[ Hi
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until the phase is within a specified distance of the

equilibriurn. The Riccati matrix has been saved
from the backward sweep and is parametrized

by time along the backward trajectory. To the
new initial condition for (z,A) is attached the
time t] = 0. For the forward integration, use
PI(tf) = P(t§ +tf) for t/ < 4 —t§. If the
forward integration requires a longer (in time) in-
tegration than did the preceding backward sweep,
then use P(t/) = P(t}) = P for t/ > t}.

Step 4. Backward integration. Integrate the Ric-
cati equation backward from the point P(t;) =
P, along the phase trajectory saved from the pre-
ceding forward integration. The time interval is
the same as for the preceding forward integration.

Step 5. Convergence check. Check for conver-
gence. If not converged, repeat Steps 3 and 4.

Remarks. As in the traditional backward sweep
method (see e.g. Bryson and Ho, 1975), the
phase vector is adjusted by stable forward in-
tegration, using directional information supplied
by the Riccati matrix that is obtained by stable
backward integration. Some special features have
been added to exploit the phase space geometry
of the nonlinear regulator. The backward sweep
is initialized on the stable manifold using eigen-
value/eigenvector information at the known equi-
librium point. Except for the initial backward
integration, the phase differential equations are
only integrated in the forward direction with the
unstable part of the vector field removed. Note
that the projection matrix in the above equation
eliminates the unstable component of the vector
field, so that if the phase vector is perturbed off
the stable manifold, the error will not be ampli-
fied by forward integration. Regarding the initial
backward integration. the stable manifold is at-
tracting in backward time, so that with sufficient
care the computed trajectory should lie on the sta-
ble manifold. This is all that is required from the
initial backward sweep. Also, the integration time
interval is not held fixed during the iterative pro-
cess. It is potentially important not to constrain
the time interval to some arbitrary length. Note
that if z is scalar then steps 1 and 2 generate the
optimal solution; iteration is unnecessary.

A variation of this method and some numerical
experience with it are presented in Rao and Mease
{1895a,b).

4.3. hgpow # 0 Case

The geometry of the phase space in the neigh-
borhood of a boundary layer type extremal tra-
jectory is more complex in this case (Fenichel,
1979). The slow segment of the trajectory is not a
constant equilibrium. but rather neighbors a seg-
ment of a trajectory on an invariant submanifold
of the phase space. called the slow manifold. Un-



der the assumptions we have made, the trajec-
tory segment on the slow manifold is the trans-
verse intersection of fast-stable and fast-unstable
manifolds. The boundary layer type extremal tra-
jectory begins slightly off the fast-stable manifold
and follows it quickly towards the slow manifold.
The trajectory then progresses slowly alongside
the slow manifold. Close to the final time, the
trajectory quickly follows the unstable manifold
to the terminal condition slightly off the unstable
manifold. For given boundary conditions on the
state, as the length of the time interval increases,
the initial and terminal boundary layer segments
of the trajectory lie closer and closer to the fast-
stable and fast-unstable manifolds, respectively.

Thus the approximate solution we seek has its
initial boundary layer segment on a stable mani-
fold and its terminal boundary layer segment on
an unstable manifold, these manifolds correspond-
ing to a particular trajectory on the slow man-
ifold. There is not an exact solution with this
behavior, because if a trajectory begins on the
fast-stable manifold, it will quickly approach the
slow manifold and then never leave. The same
property holds in backward time for a trajectory
that begins on the fast-unstable manifold. This is
why the exact solution must begin slightly off the
fast-stable manifold and terminate slightly off the
fast-unstable manifold. The initial costate value
primarily controls the initial boundary layer seg-
ment so that it follows the fast-stable manifold.
However, to the initial costate value that would
place the initial boundary-layer segment on the
fast-stable manifold must be added a small incre-
ment that ensures that the trajectory will not re-
main on the slow manifold, but instead leave at
the appropriate time following the unstable mani-
fold to meet the specified terminal condition. It is
the control of the terminal boundary-layer via this
small increment in the initial costate that makes
the two time-scale HBVP difficult to solve. More-
over, the required increment in the initial costate
value would in turn require an unreasonable or
perhaps unachievable level of precision in control-
ling a physical system. Our approach thus makes
no attempt to compute the smali increment.

Computing the extremal trajectory that satisfies
the initial state condition, begns on the fast-
stable manifold, continues on that manifold to
the slow manifold, and then proceeds on the
slow manifold is challenging due to the everpre-
sent fast-unstable component of the vector field,
hs,. With an appropriate basis to split the
vector field into the components Agiow, hyps and
hsy, the proposed procedure is to choose Ag such
that hy,(zo, Ao) = O to begin and continue on a
fast-stable manifold. Once the slow manifold is
reached, as indicated by hy, = 0, the conditions

h¢s =0 and hy, = 0 are enforced to remove stiff-
ness so that the integration step size can be in-
creased. The procedure is reversed to compute an
extremal trajectory from the terminal state condi-
tion that begins on an unstable manifold and is in-
tegrated backward in time. The condition hys =0
does not fully determine the initial costate value;
similarly the condition hy, = 0 does not fully de-
termine the terminal costate value. The remain-
ing freedom in the initial and terminal costate val-
ues is used to achieve matching of the forward and
backward trajectories, in the spirit of the method
of matched asymptotic expansions. Animportant
distinction is that this method does not require
the Hamiltonian BVP to be given in standard
form.

A basis for achieving the desired splitting ap-
proximately can be constructed from the eigen-
vectors of the local Jacobian matrix. On or near
the slow manifold, this approximation is quite ac-
curate (see discussion in Mease, 1995). Once a
point on the slow manifold is located, the back-
ward sweep method described above can be used
to extend the basis away from the slow manifold.
As mentioned above, on the slow manifold the
fast components of the vector field should be zero
whereas off the slow manifold the fast components
are nonzero and (except in a small adjacent layer)
much larger in magnitude than the slow compo-
nent. Thus one can look for points in phase space
where the magnitude of the vector field is rela-
tively small, in the spirit of the bounded deriva-
tive method of Kreiss (1979). A variation of this
approach is to use the local eigenvalues and eigen-
vectors to obtain approximations of ks, and Ay,
and look for points where they are both zero.

5. CLOSING REMARKS

The geometric structure of Hamiltonian systems
and the notion of a dichotomy have guided the
conceptualization of an indirect solution approach
for two time-scale trajectory optimization prob-
lems. An algorithm has been given for a subclass
of such problems.
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