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Abstract: The geometric structure of �nite-dimensional nonlinear systems with

dynamics on multiple time-scales is studied by analyzing the time-scale structure

present in the associated linear variational system which evolves on the tangent bundle

to the state-space. As a �rst step, we restrict our attention to a chosen reference orbit

of the nonlinear system and analyze the time scales of the linear time-varying (LTV)

system that arises from linearization about that reference trajectory.We use Lyapunov

exponents and associated characteristic directions to characterize the time-scales in

the LTV system and their geometry. This information is used to construct decoupling

coordinate transformations. An example elucidates the methodology described.
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1. INTRODUCTION

Scientists and engineers of today are required to

analyze, design, simulate and control systems of

ever increasing complexity. These systems usually

display dynamical behavior on widely separated

time-scales and their mathematical models are

usually nonlinear and high dimensional. The po-

tential advantages a�orded by knowledge of the

time-scale structure present in a system provides

strong motivation for this research. For example,

it a�ords the opportunity for simpli�ed analy-

sis by decomposing the original model into sub-

systems with distinct time-scale and/or stability

properties. Also, simulations of complex nonlinear

systems with multiple time-scales can bene�t from

numerical algorithms that are able to account for

and exploit the time-scale separation in order to

ensure accuracy.

Interesting insight on constructing general meth-

ods to e�ect this desired time-scale decomposition

of the mathematical model of the original system

into reduced order subsystems can be obtained

by studying the geometric structure of the ow

of the dynamical system in the underlying state

space. However, unlike linear time-invariant (LTI)

systems of the general form _x = Ax, where x 2

R
n and A 2 R

n�n whose time-scale structure

and geometry are completely characterized by the

eigenstructure of the matrix A, no such general

tools are known for nonlinear systems. In some

restricted cases, such as nonlinear systems that

are in the standard form of a singularly perturbed

system (Kokotovic, 1986), some tools exist for

time-scale analysis. However, casting a general

problem in standard from requires a priori knowl-

edge of variables that correspond to the di�erent

time-scales present. Physical insight can be use-

ful for low-dimensional problems in arriving at

the standard form but as system dimension and

complexity increase, physical insight diminishes.

No systematic and tractable method is known to

transform a generic nonlinear system into stan-

dard form. In this work, we attempt to investigate

the time-scale structure of generic smooth �nite-



dimensional nonlinear dynamical systems by using

a di�erential geometric viewpoint without impos-

ing a priori restrictions on their form.

2. APPROACH

To analyze the time-scale structure of systems

whose dynamics are represented by nonlinear dif-

ferential equations of the form

_x = f(x); x 2 Rn (1)

we investigate the ow on the tangent bundle TRn

speci�ed by the vector �eld f(�) together with its

associated linear variational system of equations

� _x = (@f=@x)�x = A(x(t))�x; �x 2 TxR
n (2)

Let �t(�) denote the ow of the nonlinear dy-

namics (1). Let D�t(x)(�) denote the ow of the

variational system (2). We seek to decompose the

tangent space TxR
n at each x 2 N � R

n , in some

region of the state space given by an open set N �

R
n , into subspaces with distinct time-scale and/or

stability properties. We restrict our attention to a

bounded region N of the state-space over which

the time-scale separation is assumed to be uniform

because nonlinear dynamics are capable of ex-

hibiting di�erent time-scale separation character-

istics in di�erent regions of the state-space. Hence,

we seek a set of linearly independent basis vectors

ei(x); i = 1; : : : ; n that varies smoothly with x on

each tangent space TxN (analogous to the eigen-

vectors of an LTI system) that identify time-scale

splitting directions. We require these directions

to de�ne locally invariant distributions (Isidori,

1994). For example, suppose each tangent space

can be decomposed into a p-dimensional \slow"

subspace spanned by vectors fe1; : : : ; epg and

an (n � p)-dimensional \fast" subspace spanned

by vectors fep+1; : : : ; eng then the slow distribu-

tion is given by �s(x) = spanfe1(x); : : : ; ep(x)g

and the fast distribution is given by �f (x) =

spanfep+1(x); : : : ; en(x)g where each ei(x) 2

TxN and is a smooth function of x. Local invari-

ance implies that for any v 2 �s(x0) � Tx0N

where x0 2 N � R
n , D�t(x0)(v) 2 �s(x) � TxN

for all x 2 fx : x = �t(x0)g where the time t is

restricted up to when the ow �t(x0) �rst departs

from the neighborhood N . This should hold for

arbitrary x0 2 N . In fact, such a decomposi-

tion corresponds to splitting the tangent bundle

TN = [x2NTxN into invariant subbundles with

distinct time-scale and/or stability properties; in

the above example TxN = �s(x) ��f (x) for all

x 2 N . The Frobenius theorem (Isidori, 1994)

states that if for example the slow distribution

�s(x) is involutive, then it de�nes a family of

submanifolds of the base manifold Rn . One of this

foliation of submanifolds is the slow submanifold.

Additionally, if the directions satisfy the more

stringent condition [ei(x); ej(x)] = 0 for any 1 �

i; j � n, and for all x 2 N where [�; �] denotes the

Lie-bracket, then these directions can be used to

de�ne new local coordinates which decompose the

nonlinear system into fast and slow subsystems.

As a step toward this end, we �rst analyze the

time-scale structure of the nonlinear system (1)

in the vicinity of a reference orbit (�) 2 N by

studying the linear time-varying (LTV) system of

di�erential equations

� _x = A((t))�x = A(t)�x (3)

obtained from the variational equations. The

LTV system determines how tangent vectors are

mapped between the di�erent tangent spaces

T(t)N along the reference trajectory. Knowl-

edge of tangent vectors that grow/decay at ex-

tremal rates when mapped by the ow deter-

mined by the LTV system and their corresponding

rates of expansion/contraction yields information

about convergence/divergence of state trajectories

neighboring (�) and their corresponding rates.

Let U denote the set of points in the state-

space orbit (�) so that TU =
S

(t) T(t)N de-

notes the restriction of the tangent bundle TN to

the reference trajectory. A means of decomposing

the tangent bundle TU into invariant subbundles

which have extremal time-scale behavior is to de-

termine linearly independent time-varying basis

vectors that separate the time-scales present in

the LTV system and are invariant under the linear

ow. In order to facilitate rigorous mathematical

treatment of growth/decay rates of solutions, we

shall assume that the reference trajectory and the

LTV system (3) are well de�ned for all times

t 2 R. Recall that the ow of the LTV system

D�t((�))(�x(�)) factors as D�t((�))(�x(�)) =

�(t; �)�x(�). Here �(t; �) 2 R
n�n is the state

transition matrix determined by

@�

@t
= A(t)� ; �(�; �) = In (4)

where In is the identity matrix of order n. In this

notation �x(t) = �(t; �)�x(�) for all t; � 2 R. The

reader is referred to (Brockett, 1970) for a detailed

description of di�erent properties of the transition

matrix. Associated with the LTV system (3) is the

adjoint LTV system given by

� _̂x = �AT (t)�x̂ (5)

Let the transition matrix of the adjoint LTV sys-

tem (5) be 	(t; �). Recall that �T (t; �) = 	(�; t).

	(�; t) is the transition matrix for backward time

propagation of solutions from t to � of the adjoint

LTV system.

2.1 Related Previous Work

The dynamics on the tangent bundle TU are

given by the LTV system (3). If the reference



trajectory is an equilibrium point of original non-

linear system, then the resulting system is LTI.

The time-scale structure of LTI systems and their

geometry is very well understood (Hale, 1969).

When the reference trajectory is a closed periodic

orbit of the nonlinear system, then the result-

ing LTV system in periodic and the time-scales

and their geometry are described by Floquet the-

ory (Hale, 1969). However, an accurate character-

ization of time-scale structure in generic LTV sys-

tems obtained when (�) is not necessarily either

an equilibrium nor a periodic trajectory, has re-

mained elusive. This problem has received consid-

erable attention starting from the pioneering work

of Lyapunov (reprinted (1992)). See (Hahn, 1967)

for a description of fundamental theorems relating

to the spectral theory of general LTV systems.

In recent times, contributions toward a spectral

theory of general LTV systems can be found in the

work of Wu (1980) and Zhu (1995). Zhu (1995)

has surveyed the progress and challenges in the

development of a spectral theory for general LTV

systems.

Wu (1980) introduced a notion of time-varying

\eigenvalues" and \eigenvectors" which would

serve as more general counterparts of the eigen-

values and eigenvectors of an LTI system. How-

ever, Wu (1980) recognized that this de�nition

does not uniquely determine the \eigenvalue"-

\eigenvector" pairs. In fact, it is known (Hahn,

1967; Wiesel, 1994) that any set of linearly inde-

pendent solutions of Eq.(3) can be used to con-

struct a set of \eigenvectors" and corresponding

\eigenvalues". Wiesel (1994) recognized the need

to impose additional constraints to uniquely iden-

tify extremal growth/decay rates and correspond-

ing directions and has used �nite time counter-

parts of Lyapunov exponents and directions for

that purpose.

2.1.1. Lyapunov Exponents Lyapunov exponents

were �rst introduced by Lyapunov (reprinted

(1992)) to study the average exponential rate of

growth/decay of functions. Let g(t) be real valued

function de�ned for t > 0 and bounded for �nite

t. Then the long time exponential behavior of g(t)

is captured by its Lyapunov exponent de�ned as

�i[g] = lim sup
t!1

1

t
log(jg(t)j) (6)

This measure of exponential growth/decay rate

can be applied to the 2-norm of solutions to an

LTV system given by Eq.(3). There exits a spe-

cial set of linearly independent basis solutions of

the LTV system, termed a normal basis which is

characterized by the property that the Lyapunov

exponent of any solution of the LTV system is

one among the exponents of the normal basis.

See (Hahn, 1967) for a detailed description of

Lyapunov exponents (also termed `order num-

bers') of ordinary di�erential equations. For reg-

ular LTV systems, the Lyapunov exponents are

given by (Dieci, 1997)

�i[�xi] = lim
t!1

�
1

t� �

�
ln (k�(t; �)�xi(�)k) (7)

where �xi(t) ; 1 � i � n constitute a set of normal

basis solutions.

It is important to note that the Lyapunov expo-

nents are constants over the entire trajectory (�)

and are independent of the starting point (�).

Also, the exponents are known to be invariant

under Lyapunov transformations (Hahn, 1967).

Lyapunov exponents computed for an LTI sys-

tem yield the real parts of the eigenvalues and

when computed for a periodic LTV system yield

the real parts of the Floquet exponents (see

(Hahn, 1967),Thm. 63.4). Lyapunov exponents

can therefore be considered good measures of the

time-scales present in a general LTV system. It is

not surprising that they have received a lot of at-

tention both from theoretical and computational

standpoints. However, the Lyapunov characteris-

tic directions have not received as much attention.

2.1.2. Lyapunov Characteristic Directions The

Lyapunov characteristic directions also called the

Lyapunov vectors at any given time along the

reference trajectory (�) point in the direction of

extremal average rates of growth/decay. So, they

can be determined at any initial time � by vectors

�xi(�) which extremize k�(t; �)�xi(�)k. The solu-

tions �xi(�) to this extremization problem is given

by the eigenvectors of limt!1(�
T (t; �)�(t; �))1=2t

(Dieci et. al., 1997).

Greene and Kim (1987) have shown that when

the time-scales given by the Lyapunov exponents

are distinct, the corresponding Lyapunov direc-

tions depend only on the position in state space

given by (�). The Lyapunov direction �elds are

everywhere orthogonal and determine directions

at each point on the reference trajectory along

which the average growth/decay rate is extremal.

However, not all Lyapunov direction �elds are

invariant when propagated using the transition

matrix. We have shown (Bharadwaj, 1999) that

the Lyapunov vector �eld corresponding to the

smallest Lyapunov exponent alone is invariant

under the linear ow and reduces to the eigen-

vector corresponding to the smallest eigenvalue

in the LTI case (where the eigenvalues are all

real and distinct) and the Floquet direction �eld

corresponding to the smallest Floquet exponent

in the periodic LTV case (where the Floquet ex-

ponents are all real and distinct). The Lyapunov

vector �elds are in fact the time-varying analogs

of the Schur vectors of an LTI system. This paves



the way to construct theoretical tools for spec-

tral analysis and decomposition of general LTV

systems that subsumes the well known methods

for LTI and periodic LTV systems. We now state

(see (Bharadwaj and Mease, 1999) for proof) an

important result that is necessary to construct

decoupling coordinate transformations.

Theorem 1. The Lyapunov direction �elds cor-

responding to the k smallest Lyapunov expo-

nents de�ne an invariant distribution �((t)) =

spanfln�k+1(t); : : : ; ln(t)g.

Invariance implies that if a vector v 2 �((�))

at some time � , then when propagated forward to

time t by the linear ow �(t; �)v 2 �((t)) for all

t > � .

To construct decoupling coordinate transforma-

tions we need to determine analogous quantities

for the associated adjoint LTV system (5) in back-

ward time. Note that the adjoint LTV system in

backward time has the same Lyapunov exponents

as the original LTV system. Let the Lyapunov

vector �elds of the adjoint LTV system in back-

ward time (which we shall term adjoint Lyapunov

direction �elds) be denoted l̂Ti (t) where l̂i(t) is

a row vector. An invariance result analogous to

Theorem 1 can be shown for the distribution

spanned by the adjoint Lyapunov direction �elds

corresponding to the same k-smallest Lyapunov

exponents. We shall now show the use the Lya-

punov direction �elds and the associated adjoint

Lyapunov direction �elds to construct decoupling

coordinate transformations.

3. DECOUPLING THE DYNAMICS ON

SEPARATED TIME-SCALES

Suppose that the Lyapunov exponents of the LTV

system (3) are distinct and without loss of gener-

ality ordered as �n < �(n�1) < : : : < �1. Further,

suppose that the LTV system has two time-scales

so that the Lyapunov spectrum has a separation,

i.e., �n�k+1 << �n�k. For purpose of simplicity

in discussion we assume that all the exponents are

negative so that the exponents (�n�k+1; : : : ; �n)

correspond to a k-dimensional \fast" subsystemQ

and the the exponents (�1; : : : ; �n�k) correspond

to an (n � k) dimensional \slow" subsystem P .

However, the method is equally applicable in the

more general case when some exponents are posi-

tive.

Theorem 1 implies that distribution �q given by

the span of the Lyapunov direction �elds of sub-

system Q, �q((�)) = spanfln�k+1(�); : : : ; ln(�)g

is invariant, i.e., the direction �elds spanning �q

when propagated by the linear ow cannot de-

velop components along l1(�); : : : ; lk(�). However,

note that the directions l1(�); : : : ; lk(�) can under

time evolution develop components along the di-

rection �elds in �q .

In order to decouple the two subsystems, we seek a

Lyapunov transformation of the form �x = L(t)�z

that takes the dynamics (3) to a block decoupled

form

� _z = (L�1(t)A(t)L(t) � L�1(t) _L(t))�z (8)

=

�
Aq(t) 0

0 Ap(t)

�
�z

Note that Aq(t) and Ap(t) are not unique but

we require Aq(t) to have the Lyapunov exponents

of subsystem Q and Ap(t) to have the Lyapunov

exponents of subsystem P . However, the \fast"

and \slow" distributions �q and �p are uniquely

determined. It is known (Laub, 1991; Kokotovic

et. al., 1986) that we can construct the required

L(t) from two simpler coordinate transformations

as L(t) = F (t)H(t) where

F (t) =

�
Ik 0k�(n�k)

Q(t)(n�k)�k I(n�k)

�
(9)

H(t) =

�
Ik R(t)k�(n�k)

0(n�k)�k I(n�k)

�
(10)

The inverse transformations F�1(t) and H�1(t)

can be constructed by replacing Q(t) with �Q(t)

and R(t) with �R(t) respectively. Consider �rst

the coordinate transformation �x = F (t)�y. With

A(t) suitable partitioned, the transformed dynam-

ics are given by

� _y= (F�1(t)A(t)F (t) � F�1(t) _F (t))�y = ~A(t)�y

=

�
A11(t) + A12(t)Q(t) A12(t)

Ric(Q(t); _Q(t)) A22(t)�Q(t)A12(t)

�
�y

If Ric(Q(t); _Q(t)) = 0 so that Q(t) is chosen to

satisfy the di�erential Riccati Equation (DRE)

_Q(t) =A21(t)�Q(t)A11(t) (11)

+A22(t)Q(t)�Q(t)A12(t)Q(t)

then partial decoupling results. In order to ensure

that the decoupling e�ected is the desired one,

the solution Q(t) of Eq.(11) should be so that

Aq(t) = A11(t)+A12(t)Q(t) and Ap(t) = A22(t)�

Q(t)A12(t) have the Lyapunov exponents of the

subsystems Q and P respectively. In these coordi-

nates �y = [�yq ; �yp], the fast variables �yq 2 R
k

have no inuence on the slow variables �yp 2

R
n�k . To complete the decoupling we employ the

second coordinate transformation �y = H(t)�z.

This results in

� _z =

�
Aq(t) Ric(R(t); _R(t))

0 Ap(t)

�
�z (12)



If Ric(R(t); _R(t)) = 0 so that R(t) is chosen to

satisfy the DRE

_R(t) = Aq(t)R(t) +A12(t)�R(t)Ap(t) (13)

then the desired decoupling is e�ected. The com-

posite coordinate transformation �x = L(t)�z

that takes the LTV system (3) to the decoupled

form (8) is given by

L(t) = F (t)H(t) =

�
Ik R(t)

Q(t) Q(t)R(t) + I(n�k)

�

(14)

Note also that

�q((�)) = colspan

�
Ik
Q(t)

�
(15)

�p((�)) = colspan

�
R(t)

Q(t)R(t) + I(n�k)

�
(16)

We shall now describe a procedure to construct

the desired solution Q(t) of Eq.(11) from the Lya-

punov direction �elds associated with subsystem

Q.

Theorem 2. Let �((�)) = spanfv1(�); : : : ; vk(�)g

be a k dimensional invariant distribution. Let

V (t)n�k denote the matrix with columns vi(t).

Partition V (t) as V (t) = [V11(t)k�k ;V12(t)(n�k)�k ].

Assuming that V11(t) is invertible over the desired

time-interval, let V (t)V �111 (t) = [Ik ;Q(t)(n�k)�k]

where Q(t) = V12(t)V
�1
11 (t). Then Q(t) solves the

DRE (11).

Proof : Post-multiplying V (t) by the nonsingu-

lar matrix V �111 (t) corresponds to taking linear

combinations of the columns of V (t) so that the

resulting vectors are in the special form [Ik ;Q(t)].

Since linear combinations preserve the span and

the coe�cients of the linear combination form a

nonsingular matrix, �((�)) = colspanfI ;Q(�)]g.

Also, since � is invariant under the linear ow,

the columns of [Ik; Q(�)] when propagated from

time � to t > � will lie in �((t)). Hence they can

be expressed as some linear combinations of the

columns of [Ik;Q(t)] which span �((t)) at time

t. Therefore

�(t; �)

�
Ik

Q(�)

�
=

�
Ik
Q(t)

�
C(t)k�k (17)

where C(t) is a nonsingular matrix of coe�-

cients for linear combinations of the columns of

[Ik;Q(t)]. Di�erentiating both sides with respect

to t and simplifying using _� = A(t)� and Eq.(17)

we get

A(t)

�
Ik
Q(t)

�
C(t) =

�
0
_Q(t)

�
C(t) +

�
Ik

Q(�)

�
_C(t)

(18)

This yields the two equations

_C(t) = (A11(t) +A12(t)Q(t))C(t) (19)

(A21(t) +A22(t)Q(t))C(t) = _Q(t)C(t) +Q(t) _C(t)

(20)

Substituting for _C(t) from Eq.(19) in Eq.(20) and

rearranging we get

Ric
�
Q(t); _Q(t)

�
C(t) � 0 (21)

Since C(t) is nonsingular, we getRic(Q(t); _Q(t)) �

0, i.e., Q(t) satis�es the DRE (11). 2

In order to e�ect the desired time-scale decou-

pling, the Lyapunov vector �elds corresponding

to the smallest k Lyapunov exponents which span

the invariant distribution �q can be used to con-

struct the desired solution Q(t) to the DRE (11)

as described above. When restricted to the case of

LTI systems, the Lyapunov direction �elds span-

ning �q become time-invariant, i.e., Schur vectors

which span an invariant subspace. The DRE (11)

becomes an algebraic Riccati equation whose so-

lution is given by a constant matrix Q constructed

as above using the Schur vectors.

In a similar fashion, it is possible to construct the

desired solution R(t) that solves Eq.(13) from the

adjoint Lyapunov direction �elds of the subsystem

Q.

If the LTV system (3) possesses n distinct sepa-

rated time-scales, they can be decoupled one at a

time starting from the time-scale corresponding

to the smallest Lyapunov exponent using this

procedure. When the above procedure is used

on a general LTV system with n distinct time-

scales to decouple them one at a time from the

rest of the time-scales, it is a generalization to

LTV systems of the method of deation used in

conjunction with the power method to compute

eigenvalues and eigenvectors of a constant matrix

(Horn, 1985). We illustrate the decoupling proce-

dure with an example.

Example 3. Consider the nonlinear system

_x1 = �6x1 + 5x2 + 40

�
4

9
x1 +

5

9
x2

�2

_x2 = 4x1 � 5x2 � 32

�
4

9
x1 +

5

9
x2

�2 (22)

This nonlinear system is designed to have slow

and fast time-scales. The slow manifold of these

dynamics is a parabola given by 1
9
(x1 � x2) =�

4
9
x1 +

5
9
x2
�2
. The ow on the slow manifold leads

into the equilibrium point at the origin in forward

time. The linearization of the nonlinear dynamics

(22) about the equilibrium at the origin results

in an LTI system with eigenvalues �1 = �1 and

�2 = �10. The corresponding eigenvectors are

e1 = [1; 1] and e2 = [5;�4].

We now linearize the nonlinear system about a

reference trajectory which is contained in the slow



manifold. The reference trajectory is given by

(t) = [x1ref (t) ; x2ref (t)] = [e�t + 5e�2t ; e�t �

4e�2t]. The resulting LTV system is given by

� _x = A(t)�x where

A(t) =

�
�6 + 320

9
e�t 5 + 400

9
e�t

4� 256
9
e�t �5� 320

9
e�t

�
(23)

By construction, the characteristic slow and fast

direction �elds of this LTV system are known.

The slow direction at each point on the refer-

ence trajectory is given by the tangent direction

_ since the reference trajectory is part of the

slow manifold. Therefore the slow direction �eld

e1(t) = _(t). So e1(t) = [1 + 10e�t ; 1 � 8e�t].

Note that as t ! 1, (t) approaches the origin

and e1(t)! e1. By construction, the fast direction

�eld everywhere along (�) is given by e2(t) =

[4;�5]. e1(t) and e2(t) are the time-scale splitting

direction �elds and also qualify as \eigenvectors".

The transition matrix of the LTV system can also

be determined in closed form and is given by

� = [�ij ] where

�11(t) =
4
9
e�t + 40

9
e�2t � 35

9
e�10t (24)

�12(t) =
5
9
e�t + 50

9
e�2t � 55

9
e�10t (25)

�21(t) =
4
9
e�t � 32

9
e�2t + 28

9
e�10t (26)

�22(t) =
5
9
e�t � 40

9
e�2t + 44

9
e�10t (27)

Note that �(t; �) = �(t; 0)��1(�; 0).

It can be veri�ed either numerically or by tedious

algebra that the Lyapunov exponents of this LTV

system are �1 = �1 and �2 = �10 and that the

Lyapunov direction �eld l2(t) corresponding to �2
points in the same direction as e2(t). It can also be

veri�ed either numerically or by algebraic manip-

ulations that the adjoint Lyapunov direction �eld

corresponding to the same time-scale, l̂2(t), points

in the direction [�(1 � 8e�t) (1 + 10e�t)]. Note

that this direction reduces to the left-eigenvector

of the LTI system corresponding to the eigen-

value �2 = �10 as t ! 1. Theorem 1 and its

counterpart for the adjoint LTV system assure us

that �q = spanfl2(�)g and �̂q = spanfl̂T2 (�)g are

invariant distributions. Casting l2(t) in the form

[1;Q(t)] we get Q(t) = �4=5 which solves the

DRE

_Q=
�
4� 256

9
e�t

�
�Q(t)

�
�6 + 320

9
e�t

�
(28)

+
�
�5� 320

9
e�t

�
Q(t)�Q(t)

�
5 + 400

9
e�t

�
Q(t)

We now construct F (t) and perform the coordi-

nate transformation �x = F (t)�y so that Aq(t) =

�10 and Ap(t) = �1. We also compute ~l2(t) =

l̂2(t)F (t) = [�9=5 (1 + 10e�t)]. Casting ~l2(t) in

the form [1 �R(t)] we get R(t) = (5=9)(1+10e�t)

which solves the DRE

_R = �10R(t) +
�
5 + 400

9
e�t

�
+R(t) (29)

Next, we construct and perform the coordinate

transformation to �z coordinates using H(t) to

complete the decoupling of the slow and fast time-

scales. In this example the \eigenvalues" turn

out to be constants �1 and �10. Also note that

the composite coordinate transformation L(t) =

F (t)H(t) is given by

L(t) =

�
1 (5=9)(1 + 10e�t)

�4=5 (5=9)(1� 8e�t)

�
(30)

Note that the columns point in the same direc-

tions as the time-scale splitting directions e1(t)

and e2(t).
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