
Identifying Time-Scale Structure for Simpli�ed Guidance

Law Development

Sanjay Bharadwaj�, Mengjin Wuy, Kenneth .D. Measezx

Dept. of Mechanical and Aerospace Engineering

University of California, Irvine, CA 92697

Abstract

Guidance law development for aerospace vehicles
can be signi�cantly simpli�ed by reducing the or-
der of the vehicle dynamic model. Identifying time-
scale separation in the system dynamics is import-
ant in this regard. This paper introduces a sys-
tematic means of identifying the time-scale structure
in a nonlinear dynamical system by using regional
Lyapunov exponents. Regional Lyapunov exponents
and associated vectors are used to analyze the lin-
ear variational equations associated with a nonlin-
ear system, in order to draw conclusions about the
time-scale structure in the nonlinear system. Ex-
amples are used to illustrate the the time-scale in-
formation provided by the regional Lyapunov expo-
nents. The time scale structure in an example of
closed-loop entry dynamics is investigated using the
regional Lyapunov exponents. The exponents and
their associated directions identify energy as the slow
variable and radial distance and ight path angle
as fast variables and thus provide the information
needed for reduced order guidance law development.

Introduction

Guidance problems for aerospace vehicles generically
involve nonlinear dynamics, state and control con-
straints, and �nite time intervals, and as such they
do not lend themselves directly to much of the exist-
ing control design methodology. E�ective guidance
law development is greatly facilitated if the order of
the vehicle dynamic model can be reduced. Using a
rigid body model, neglecting actuator dynamics, and
further assuming that the attitude motion is much
faster than the translational motion so that attitude
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variables can be treated as controls for the transla-
tional motion, signi�cantly reduces the order of the
dynamic model and is often su�ciently accurate for
guidance law design. Even so, developing an e�ect-
ive guidance law remains a formidable challenge due
to the features mentioned above.
Further order reduction may be possible if there

is time-scale separation in the translational dynam-
ics. For example the energy state approximation1 has
been used e�ectively for some guidance problems. If
the time-scale separation is understood to the point
of knowing how to group the state variables accord-
ing to the time-scales on which they evolve, then
the singular perturbation method provides a formal-
ism for constructing an accurate approximation from
solutions to lower-order subproblems.2, 3 Calise4 pro-
posed to reduce the guidance law design task to a
sequence of scalar design subtasks by hypothesizing
that for the closed-loop translational dynamics, each
state variable would evolve on a distinct time-scale.
This approach has been referred to as forced singu-
lar perturbations since the time-scale separation is
forced into the system using feedback control. While
forced singular perturbations simpli�es guidance law
design, it may incur a control e�ort penalty.
What has been missing is a reliable and system-

atic means of identifying time-scales and the corres-
ponding structure in nonlinear dynamic models, i.e.,
the appropriate counterpart to eigenvalues and ei-
genvectors for linear, time-invariant dynamic mod-
els. It seems that the appropriate focal point for
identifying the time-scale structure of a nonlinear
system is the behavior of the solutions to the vari-
ational equations along trajectories of the nonlinear
system. The variational equations can be viewed as
linear time-varying : the variational system matrix
actually depends on the state of the nonlinear system,
but along a trajectory of the nonlinear system this
dependence can be treated as a dependence on time.
Lyapunov introduced characteristic exponents and
associated direction vectors for linear time-varying
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systems. Lyapunov exponents give an average rate
of expansion or contraction over an in�nite time in-
terval, when the appropriate limits exist. For guid-
ance problems, we are interested in time-scales as-
sociated with a �nite-time segment of a trajectory.
Recently, Wiesel6 has introduced regional Lyapunov
exponents. These are de�ned similar to Lyapunov
exponents, except that they give average rates of con-
traction and expansion over a �nite-time interval.
In this paper, we develop an approach to identi-

fying the time-scale structure of a nonlinear dy-
namic model based on the use of regional Lya-
punov exponents. The paper is organized as fol-
lows. The general form of the nonlinear dynamic
model is presented, along with the associated lin-
ear variational equations. The classical and regional
Lyapunov exponents are de�ned. The regional Lya-
punov exponents are computed for a simple model
to illustrate the information they provide, the inter-
pretation of this information, and the considerations
for choosing the time-interval over which the rates
of contraction and expansion are averaged. We then
relate the information regarding the structure of the
solutions to the variational equations to the time-
scale structure of the nonlinear system in the context
of an example of closed-loop entry dynamics.

Linear Variational System

Associated With

A Nonlinear Dynamical System

Consider a nonlinear system of the form

_x = f(x; u) (1)

where x 2 R
n is the vector of state variables and

u 2 R
m is the vector of control variables. We are

interested in investigating the time-scale structure of
the above system with a control which is given by
either a feedback law of the form u = k(x) or an
open-loop program of the form u(t) = k(x(t); �(t))
as a result of solving an optimal control problem,
where � 2 R

n is the vector of co-state variables sat-
isfying _� = �@H

@x
(x; �), and H(x; �) is the optimal

Hamiltonian. In the former case, the space of in-
terest over which trajectories of the closed loop sys-
tem _x = f(x; k(x)) evolve is the state space Rn whose
points are represented by x. In the latter case, the
space of interest is the phase space R2n whose points
are represented by (x; �).

In either case, the time-scale structure can be ana-
lyzed by studying the system of variational equations
which are obtained by linearizing the nonlinear sys-
tem about a trajectory in the appropriate space of
interest. The variational equations associated with
the system, _x = f(x; k(x)), are given by

� _x =
@f

@x
(x)�x (2)

whereas the variational equations associated with the
system, _x = f(x; u(t)) where u(t) is obtained by
solving an optimal control problem as described in
the latter case, are given by

�
� _x

� _�

�
=

�
H�x H��

�Hxx �Hx�

��
�x
��

�
(3)

where terms likeHx� denote the second partial deriv-
atives of the optimal Hamiltonian with respect to the
variables indicated in the subscript. The trajectory
(in the state space or the phase space) about which
the linearization is carried out is naturally paramet-
erized by time, and therefore the variational equa-
tions can be analyzed as a linear-time-varying (LTV)
system.
An analysis of the time-scale structure of the tra-

jectories of the variational equations yields inform-
ation about the behavior of trajectories of the non-
linear system in the neighborhood of the reference
trajectory to which the variational equations corres-
pond. Therefore, the time-scale structure in the vari-
ational equations yields information about the time-
scale structure of the nonlinear system. The fol-
lowing section describes measures for characterizing
time scales in LTV systems.

Measures of

Time-Scale Separation

In linear time invariant (LTI) systems of the form
_x = Ax, the complete time-scale information can be
obtained by examining the eigenvalues �i; 1 � i � n,
and the corresponding eigenvectors vi. The di�er-
ence in magnitude of the real part of the eigenvalues
jRe(�i)j measures the separation in time-scales. For
example, if jRe(�i)j >> jRe(�j)j, then states in the
subspace spanned by vi evolve much faster than those
in the subspace spanned by vj (provided jIm(�j)j is
not signi�cantly larger than jIm(�i)j). Thus, the
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separation among jRe(�i)j-s determines the sets of
eigenvectors whose spans decompose the state space
into subspaces with distinct time-scale behavior.
We now consider LTV systems of the form

_x = A(t)x ; x 2 Rn (4)

where A(t) is continuous and bounded. For LTV
systems where A(t) is periodic, the Floquet multipli-
ers and the associated direction vectors can be used
exactly analogous to eigenvalues and eigenvectors in
the LTI case, to identify the time-scale structure. For
general LTV systems, the asymptotic rates of con-
traction or expansion of solutions are characterized
by the Lyapunov exponents.5 The Lyapunov expo-
nent associated with a solution x(t; x0) of the LTV
system (4), where x(t0) = x0, is given by

�(x0) = lim
t!1

kx(t; x0)k

t
(5)

when the limit exists, and the direction vector as-
sociated with the Lyapunov exponent is x0. Note
that the Lyapunov exponents reduce to eigenvalues
when applied to an LTI system. For simplicity con-
sider a scalar LTI system _x = �1x with a solu-
tion x(t; x0) = exp (�1t)x0. The Lyapunov exponent
�(x0) = �1.
In general, the LTV system (4) has at most n dis-

tinct Lyapunov exponents and at most n linearly in-
dependent associated direction vectors.5 The Lya-
punov exponents themselves are independent of the
choice of the initial time t0, but the associated dir-
ections depend on the choice of t0. The separation
in the Lyapunov exponents determines the time-scale
separation in the LTV system. Analogous to the ei-
genvectors of the LTI system, the direction vectors
associated with the Lyapunov exponents determine
the decomposition of the state space into subspaces
with distinct time-scale behavior. However since the
direction vectors are dependent on the choice of t0,
they can be viewed as providing a time varying basis
vectors which at each instant span the corresponding
subspaces which separate the time-scale behavior.
The Lyapunov exponents are averages over an in-

�nite time interval of the rates of contraction or ex-
pansion of solutions. For our purposes, it is averages
over �nite time intervals that are relevant. Wiesel6

has de�ned regional Lyapunov exponents that meas-
ure the average contraction or expansion of solutions
over a �nite time interval. The regional Lyapunov
exponents are de�ned as

�i =
�

1
tf�t0

�
ln
�
kxi(tf )k

kxi(t0)k

�
=

�
1

tf�t0

�
ln
�
k�(tf ;t0)xi(t0)k

kxi(t0)k

� (6)

where �(t; t0) is the state-transition matrix of the
LTV system (4). The associated directions at t0 are
given by xi(t0) and hence at any time t they are given
by xi(t) = �(t; t0)xi(t0). In order to determine the
entire spectrum of Lyapunov exponents �i without
an exhaustive trial and error procedure with arbit-
rary vectors at t0, we need to, if possible, compute a
linearly independent set of vectors xi(t0) that corres-
pond to the di�erent time-scales. Such vectors can be
obtained6 by solving for the unit vectors kx(t0)k = 1
that extremize�

1

tf � t0

�
ln (k�(tf ; t0)x(t0)k)

It can be shown that the eigenvectors of
�(tf ; t0)

T�(tf ; t0) are the solutions to this ex-
tremization problem and hence are the vectors
xi(t0); i = 1; : : : ; n that we need to compute the
spectrum of regional Lyapunov exponents.
We shall now, following Wiesel, show that with

the knowledge of these regional Lyapunov exponents
and their associated directions at t0 (and hence for
all time t), a coordinate transformation that diagon-
alizes the LTV system (4) (and hence decouples the
di�erent time-scales in the system) can be construc-
ted.
Consider the directions ei =

xi
kxi(t)k

_ei =
�

1
kxik2

� �
_xikxik � xi

d
dt
(kxik)

�
= A(t)xi

kxik
� xi
kxik

�
1
kxik

d
dt
(kxik)

�
= A(t)ei � ei�i(t)

where

�i(t) =
1

kxi(t)k

d

dt
(kxi(t)k) (7)

is the normalized rate of change of the magnitude of
kxi(t)k. Therefore, the evolution of all the directions
ei(t); 1 � i � n together is described by the matrix
di�erential equation

_E(t) = A(t)E(t) �E(t)�(t) (8)

where �(t) = diag(�i(t)) and

E(t) =

2
4 j j j

e1(t) � � � en(t)
j j j

3
5 (9)
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We now consider the time-varying coordinate trans-
formation x(t) = E(t)�(t) so that the dynamics in
the new coordinates �(t) are given by

_� = �(t)� (10)

which are in diagonal form where the di�erent time-
scales are decoupled. Now, note from Eq. (7), it can
be shown that

kxi(tf )k

kxi(t0)k
=

Z tf

t0

�i(t)dt

so that the regional Lyapunov exponent in Eq. (6)
is

�i =
�

1
tf�t0

�R tf
t0

�i(t)dt

=
1

tf � t0

Z tf

t0

1

kxk

d(kxk)

dt
dt

(11)

This shows that the regional Lyapunov exponent is
indeed the average over the time interval [t0; tf ] of
the rate of change of the magnitude of xi(t).

Illustrative Example

Consider an LTV system _x = A(t)x, where A(t) =
[aij(t)]

a11(t) = �5 + 0:2 sin(t)

a12(t) =
sin(3t2)

t+ 0:01

a13(t) = 2:5 sin(t) exp(�0:01t)

a21(t) = 1 + exp(�0:2t)

a22(t) = �15 exp(�0:002t)

a23(t) =
t

2 + t+ cos(t3)
+ 3

a31(t) =
t

t2 + 1

a32(t) = exp(�0:005t) + 1

a33(t) =
�t

t+ 1

With tf = 1 the regional Lyapunov exponents
are �1 = �4:9734 ; �2 = �15:5391 ; �3 =
+0:3126. The associated direction vectors are
e1(t0) = [�0:9964 ; �0:0107 ; 0:0836]T , e2(t0) =
[�0:0214 ; 0:9915 ; �0:1285]T and e3(t0) =
[0:0815 ; 0:1298 ; 0:9882]T . This implies that there
are 3 distinct time-scales over the time interval [0; 1].
e2(t) is the fastest direction and is stable as indicated
by the negative sign of �2. e1(t) is the slowest dir-
ection and is unstable as indicated by the sign of �3.
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Evolution of the Norms of Solutions along time−scale decoupling directions

Fig. 1: ke1(t)k,ke2(t)k and ke3(t)k vs. Time for tf = 1

sec.

Fig. 1 shows the evolution of norms of solutions to
this LTV system along the directions e1(t); e2(t) and
e3(t). Fig. 2 shows the normalized instantaneous
rates of change of the solutions along the above dir-
ections, i.e., �1(t); �2(t) and �3(t). Both these show
clearly the time-scale separation present in the sys-
tem over the interval [0; 1].
With tf = 15, the regional Lyapunov

exponents are �1 = �2:9061 ; �2 =
�2:8139 ; �3 = �0:2736 and their associ-
ated directions which decouple the time-scales
are e1(t0) = [0:6248 ; �0:7791 ; 0:0516]T ,
e2(t0) = [�0:7716 ; �0:6133 ; 0:1437]T and
e3(t0) = [0:0803 ; 0:1298 ; 0:9883]T . As in the
previous two plots, Figs. 3 and 4 show the evolution
of the norms of solutions along these new directions
and their normalized rates of change. We can see
that over the interval [0; 15], there is no signi�cant
time-scale separation between directions e1 and
e2. However, vectors in spanfe1; e2g decay much
faster than vectors along e3. Also, note that over
the interval [0; 15], e3 is now a stable direction as
indicated by the negative sign of �3.

Application to Closed-Loop

Entry Dynamics
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Fig. 2: �1(t),�2(t) and �3(t) vs. time for tf = 1 sec.

In this section we shall use the regional Lyapunov
exponents to uncover the time-scale structure in an
example of closed loop entry dynamics. The vertical-
plane dynamics of a gliding aerospace vehicle are
given by the equations

_r = V sin 
_V = �D � g sin 

_ = (1=V )
�
L� (g � V 2=r)(cos )

� (12)

where r is the radial distance from the center of
the earth, V is the earth-relative velocity and 
is the ight path angle. The speci�c drag force
D = (0:5�(r)V 2SCD)=m where CD , the coe�cient
of drag, is taken to be constant and m is the mass of
the vehicle during entry. �(r) = �0 exp(�(r�r0)=H)
is an exponential model for the density as a function
of altitude.
Lift is taken to be the control which is used to

track a reference altitude vs. velocity pro�le. The
feedback control law

L = (g � V 2=r) cos  +

�
1

cos 

�
(D + g sin ) sin 

+

�
1

cos 

�
[�rref � kp(r � rref )� kd( _r � _rref )]

is used to track a reference radial distance versus
velocity pro�le. Note that the error terms (r � rref )
and ( _r� _rref ) are referenced to the current velocity.
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Evolution of the Norms of Solutions along time−scale decoupling directions

Fig. 3: ke1(t)k,ke2(t)k and ke3(t)k vs. Time for tf = 15

sec.

The variational equations of the closed-loop sys-
tem are then given by

2
4 � _r

� _V
� _

3
5 = A(rref (t); Vref (t); ref (t))

2
4 �r

�V
�

3
5

where A = [aij ],

a11(t) = 0

a12(t) = sin ref

a13(t) = Vref cos ref

a21(t) = Dref=H

a22(t) = �2Dref=Vref

a23(t) = �g cos ref

a31(t) =

�
� (Dref sin ref=H + kp)

Vref cos ref

�

a32(t) = 0

a33(t) =
Dref + 2g sin ref

Vref
� kd

These are used to investigate the time-scale structure
of the nonlinear system.
The regional Lyapunov exponents and their as-

sociated direction vectors for the above LTV sys-
tem over the time interval [0; 750] seconds are
�1 = �5354:2, �2 = �5665:5, �3 = �2:2659
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Fig. 4: �1(t),�2(t) and �3(t) vs. time for tf = 15 sec.

and e1(t0) = [�0:9288 ; 0:0613 ; �0:3656]T ,
e2(t0) = [0:3661 ; �0:0029 ; �0:9306]T , e3(t0) =
[0:0581 ; 0:9981 ; 0:0198]T . From these, we can now
infer that in the variational LTV system, perturba-
tions in all directions decay. Therefore, for the non-
linear dynamics (12), trajectories neighboring the
reference converge to it. The regional Lyapunov ex-
ponents also indicate that vectors in spanfe1; e2g de-
cay much faster the vectors in spanfe3g. Figs. 5 and
6 show the time-scale separation graphically.
In Fig. 7, the feedback tracking of the reference

altitude vs. velocity pro�le is shown. Also shown
at each point along the reference trajectory are the
projections of the basis vectors e1(t) and e3(t) onto
the r � V plane. The fast direction is indicated by
the double arrowhead. Curves of constant energy are
also plotted. It can be seen that the fast direction is
tangent to the constant energy curves. Simulations
of the closed loop system show that perturbations
in altitude away from the reference quickly decay
along almost constant energy lines. Thus the re-
gional Lyapunov exponents and associated direction
vectors have successfully identi�ed energy as a slow
variable, while altitude and ight path angle are fast
variables. It is important to point out that, although
the example was concocted such that energy is a slow
variable, the method is not at all biased or restricted
to this outcome.

Conclusions and Comments

A systematic means of identifying time-scales for
nonlinear dynamical systems using the regional Lya-
punov exponents was introduced. Numerical ex-
amples were used to illustrate the time-scale informa-
tion that these regional Lyapunov exponents provide.
This time-scale analysis was applied to the closed-
loop entry guidance dynamics and shown to identify
the energy as a slow variable and radial distance and
ight path angle as fast variables. This is the inform-
ation needed for reduced order guidance law devel-
opment.
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Fig. 5: ke1(t)k,ke2(t)k and ke3(t)k vs. Time for tf = 750

sec.
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