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Abstract

£

In this paper, a new indirect method for solving op-
timal control problems, called the modified sweep
method, is demonstrated numerically. The state-
adjoint rate vector is expressed in terms of a set of
basis vectors. These basis vectors give rise to rate
coordinates that approximately identify the stable
and unstable behavior. The state, adjoint, and ap-
proximate stable rate coordinates are integrated for-
ward in time using the approximate unstable rate co-
ordinate as an input whereas the approximate un-
stable rate coordinate is integrated in backward time
using the approximate stable rate coordinate as an
input. As a result, the forward and backward integ-
rations do not amplify errors in the unknown bound-
ary conditions. The method is illustrated for two
example problems. The method possesses two im-
portant features. First, the forward and backward
integration are always stable. Second, it is shown
that the converged solution is indeed a solution of
the original problem.

Introduction

The purpose of this research is to develop a new
methodology for handling optimal control problems
for which the dynamics evolve on two or more widely
separated time-scales. It is known that solutions of
two time-scale optimal control problems evolve in
three distinct phases. The solution first decays rap-
idly to a slow solution, the slow solution then takes
over during the middle segment, and finally the solu-
tion grows rapidly to meet the final boundary con-
dition. Using the singular perturbation method, the
zeroth-order solution for the first segment is obtained
by solving an infinite horizon regulator problem [3].
As a first step towards handling the complete prob-
lem, an approach presented here for solving infinite
horizon regulator problems.

The modified sweep method, based on the Com-
putational Singular Perturbation (CSP)} methodo-
logy [4, 5] is a way to solve infinite horizon regulator
problems. In the modified sweep method, the state-
adjoint rate vector is expressed as a linear combin-
ation of known basis vectors which give rise to rate
coordinates. By choosing an appropriate basis, the
directions of the stable and unstable dynamics are
approximately identified. In both forward time the
state and adjoint are integrated. However, in forward
time the the stable rate coordinate is integrated us-
ing the unstable rate coordinate as an input whereas

#in backward time the unstable rate coordinate is in-
tegrated using the stable rate coordinate as an input.
This new value for the unstable rate coordinate is
used to obtain a more accurate solution on the en-
suing forward integration. This process is repeated
until convergence.

The modified sweep method is demonstrated on
two problems. The first problem is the regulation of
a mass connected to a spring with a nonlinear for-
cing function. This example demonstrates two im-
portant properties. First, the unstable behavior is
suppressed. Second, with each iteration the solution
improves. After several iterations the exact solution
is found.

The second example is a minimum time prob-
lem for a supersonic aircraft. The solution in the
left boundary layer starting at a point near Mach
1 is considered. For this problem, the modified
sweep method is shown suppress the unstable beha-
vior on each sweep. Furthermore, with each success-
ive sweep the solution is shown to approach the exact
solution.

Problem Formulation

Consider the problem of minimizing the cost
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function
= ! Llz(t), u(t)] d 1

subject to the dynamic constraint

¢ = f(z,y,u), 2(0) = xo
(2)
6:’;’ = g(a:,y, U), y(O) = Yo

where £ € R! and y € R | + k = n, together form
the state, u € R™ is the control, and ¢ is a small
parameter that identifies a time-scale separation in
the dynamics. Eq. (2) is in the so called standard
form because the dynamics on the slow and fast time-
scale are identified explicitly by z and y, respectively.
The parameter ¢ may arise naturally, or may be in-
troduced artificially to identify the separation in the
time-scales. The Hamiltonian is given by

H=L+X [+ (3)
where A, € B! and Ay € R* are the co-states or ad-

joints corresponding to = and y, respectively. The
adjoint equations are given by

Ao = —0H /dz
. (4)
€Ny = —0H /0y
together with the boundary condition
Ac(ty) =0
A (i) =0 (5)

and the optimal control is given by
u* = arg min H. (6)
u

It is assumed here that the optimal control can be
found as an explicit function of the state and adjoint,
ie., u* = u"(z,y, Az, Ay). Substituting the optimal
control into Eq. (2) and Eq. {4), we obtain

= 0H/OAs, 2(0) = z0
€y =0H/IAy, y(0) = wo
Ar = —OH [0z, As(ty) =0

ehy = —0H/dy, A(ty) = 0.

where H now refers to the Hamiltonian evaluated on
the optimal control. The system of Eq. (7) forms
an Hamiltonian Two-Point Boundary Value Prob-
lem (HTPBVP). It can be seen that in the standard
form, the adjoints associated with the slow and fast
variables are themselves slow and fast. Since the
Hamiltonian is not an explicit function of time, it is
constant along solutions to Eq. (7).

Time-Scale Structure

In the singular perturbation method, the solution
to the HTPBVP of Eq. (7) is constructed as a sum of
a left boundary layer solution, a slow solution, and a
right boundary layer solution [3]. The state-adjoint
vector is defined as

x
p= )‘1 : (8)
Ay

The solution for p(t) and the control u(t) can then
be written as [7]

1t

p(t, €) = ps(t, €) + Py

A+ 0)

t—1g

ity —t
=€) +up (-

ut, €) = uslt, €) + uif(

The first terms on the right hand sides of both Egs.
(9) and (10) represent the slow solution; the second
and third terms represent boundary-layer corrections
to the slow solution near the initial and final times,
respectively. (Geometrically [3], there exists a slow
invariant manifold in the state-adjoint space. For
any initial state on the slow manifold, the state-
adjoint and the control are given by p,(t,¢) and
u(t, €), respectively. For any initial state off the slow
manifold, the trajectory rapidly approaches the slow
manifold in forward time according to p}(%ﬂl,e).
The left boundary layer accounts for the deviation of
the actual state from the slow manifold.

Left Boundary Layer

In the left boundary layer, the state and adjoint

r = = giving

g = eBH /B, z(0) = x¢
y' = 0H/0A,, y(0) = uo
M o= —edH [0z, Mlry) =0

Ay = —0H [0y, Ay(ry) = 0.
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where ’ denotes differentiation with respect to . Eq.
(11) represent the dynamics as viewed on the fast
time-scale. The zeroth-order approximation to the
solution of Eq. (11) is found by setting ¢ = 0. The
modified problem in the left boundary layer then
evolves with the dynamics of the reduced system,
given by

y = 0H/0A,, y(0) = yo
. (12)
Ay = —=0H [0y, lim, 00 Ay (T) = Ay eq.

where z and X, constants. The value Ay,eq COD-
responds to an equilibrium point (yeq, Ay eq) of Eq.

(12). Furthermore, Eq. (12) corresponds to an infin--

ite horizon regulator problem on the fast time-scale.
The remainder of this paper is concerned with the
solution of infinite horizon problems.

Modified Sweep Method

The modified sweep method is an indirect method
for computing numerical solutions of boundary value
problems [1, 6]. It is an extension of the Computa-
tional Singular Perturbation (CSP) methodology. Its
application here is to problems of the form

» = { 3;111‘1{/86/\33 ] : [ nm:i?)xz)xi Aoy } (13)

where z(t) is the state, A(¢) is the adjoint, and

-]

is the state-adjoint or phase vector. The initial con-
dition for the state is given by z¢ and the final condi-
tion for the adjoint is Aeq and is assumed to corres-
pond to a saddle-type equilibrium point ((Zeq, Aeq))
of Eq. (13). The solution of Eq. (13) is assumed to
approach (z.q, Aey) asymptotically in forward time
along the stable manifold of the equilibrium point.
At any point p, G(p) can be written as a linear com-
bination of a set of basis vectors
2n

G(p) =Y wilp)a: = V(p)g (14)

=1
where V(p) = [v1(p),...,ven(p)] € R¥X 4 =
(01, q2.)7 € R, and V is assumed to vary

smoothly with p. The vector g is called a
rate coordinate vector and its components g¢;, i =

1,2,...,2n are called rate coordinates. The vector
q satisfies the equation
7= W(p)G(p) (15)
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where W (p) = V~!(p). Differentiating Eq. (15) with
respect to time along a trajectory of the Hamiltonian
system of Eq. (13), the rate coordinate vector obeys
the differential equation

i= [WV+ij}q= Zq (16)

where J = %% is the Jacobian matrix of G(p) and
Z=Z@)=WV+WJV.

The matrix V is said to form a modal basis if at
every point in the state adjoint space, the matrix Z
has the block-diagonal form

Z=A= [ MO } (17)

and the transition matrices ®,(¢,0) of A,(¢) and
®,(t,0) of Ay(t) approach zero in forward and back-
ward time, respectively. With Z = A as in Eq. (17},
the matrices V' and W and the vector ¢ are given
the special notations V = A, W = B, and qg=nhto
identify them as a modal basis. With A ordered as
in Eq. (17), the matrices A and B have the ordering

A =[A, As] and B = [ Z“ }, respectively, and the

vector h has the ordering h = [ h J A non-modal

hs
basis will be ordered in the same manner. Con-

sequently, the corresponding non-modal quantities
yill be V = [V, Vi], W = [ %“ :l,andq: [ I }
s $
The subscripts ”s” and ”"u” are used to denote the
approzimate stable and unstable modes, respectively.

In general it is not possible to find modal basis
vectors, so non-modal basis vectors must be used.
As a result, Z is not block-diagonal and the rate co-
ordinates are coupled. Through iteration, the coup-
ling between the approximate stable and unstable
rate coordinates can be computed. Using the value
of q4(t) as an input the 3n first-order differential
equations

P = Vugqu + Vig,, p(0) = py
. _ N - . qu . .
Ge = [Ws" + WSJV] l: s J ¥ %(0) = 450 (18)

are integrated forward in time. The boundary con-
ditions for A(0) and ¢,(0) are computed as follows.
First, the equation

W, - Glpo) = 9.(0) (19)




is solved for A(0) which gives a value for po. Then,
the equation

q:(0) = W, - G(po) (20)

is solved for ¢,(0) = g¢so0. In backward time, the
value of ¢,(t) is used as an input to the system of 3n
first-order differential equations

ﬁ: Vu‘]u+vsq.np(7') = Peq
‘ju = [WUV—FVVUJV} [ Zu ] s (Iu(r) =0 (

s

21)

where ” 7" represents a sufficiently large time so that
the dynamics have essentially come to equilibrium.
The boundary conditions z(t;) and gu(ts) are com-
puted as follows. First the equation

W, - G(p(tyr)) = ¢s(ty) (22)

is solved for z(t;). Then, the equation

qu(tf) =Wy - G(p(tf))

is solved for g, (t;). The value of g, (t) from Eq. (21)
is then used on the next forward sweep. For a de-
tailed description of the modified sweep method, the
reader is referred to [1].

(23)

Examples

The modified sweep method will now be applied
to two problems. The first problem is a regulation
problem of a mass on a spring. The second problem
concerns a three state formulation of the motion of
an aircraft flying in a vertical plane.

Example 1: Spring-Mass System

Consider the dynamical system of a mass connected
to a spring driven by a forcing function

mi + g(z) = f(t), z(0) = o, 2(0) = 2o (24)

where m is mass, ¢ is the position of the spring rel-
ative to the zero force point of the spring, f(t) is the
force applied to the spring, and g(x) is the force in
the spring. Setting zy = x and zy = z, the system
of Eq. (24) has the form

Iy = xg, 21(0) = z1o

Lo = h(£) + u(t), .EQ{O) s (25)
where h{r) = —g(z)/m and u(t) = f(t}/m. For
this example, let the spring force be given by g(z) =
k123 + kox, where ky and ko are positive constants.
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Assume that it is desired to drive the system from
the initial condition (1o, £30) while minimizing the
cost function

1 [ 2
J = 3 / (q12? + qazd + ru?)dt. (26)
0

The Hamiltonian is given by

1
H = =(q12? + gozl + ru?) + A2z + A (h(z) +u).
2 (27)

The first-order necessary conditions for optimality
lead to the following infinite horizon HTPBVP:

&) = 3, 21(0) = 210

:iz = -—Eﬁi;}:—kgﬁi — )\22/7‘, :L‘Q(O) = T30
Ay = -1 + ;\2&2‘%‘1—5‘1‘7 lim; 0 /\l(t) - 0(28)

Ay = —qaz2 — A1, My Ag(t) =0

For this problem, the basis vectors are taken to be
the eigenvectors of the Jacobian of Eq. (28) evalu-
ated at the equilibrium point 2 ¢q = £2,eq = Al eq =
A2.eq = 0. Results from applying the modified sweep
method for the initial condition z1(0) = 1, 2(0) = 0
and the values k; = kg = q; = g3 = r = 1 are shown
in Figures 1-4 alongside the exact solution on the
interval ¢ € [0, 10]sec. The first important feature
to observe is that each of the sweeps the values of
z1, z3, A1, and Ay approach constants as t — 10;
the explosive behavior has been removed. It can be
seen that by the 7¢% sweep, the solution obtained by
the modified sweep method matches closely with the
exact solution.

Example 2: Aircraft Flight

The motion of an aircraft flying in a vertical plane
can be described by the equations

E=(T-D)¥%
¢h = Vsinvy (29)
ey = &(n — cosv)

where £ is the energy altitude, % is the altitude in
[m], 7 is the flight path angle in [rad], V is the velo-
city in [m/s] and g is the acceleration due to gravity
in [m/s?]. The parameter ¢ is introduced to identify
the time-scale separation and to facilitate the applic-
ation of the singular perturbation technique. The
load factor, n, is the control for this problem. The
aerodynamic model used here is that of [10]. The




problem considered is to move the aircraft from an
initial state [Ey, hg, Yo] to a final state [Ey, hi,v¢lin
minimum time where the initial state is near a point
where M = V/a ~ 1 and the final state is at a point
with a significantly higher energy and altitude from
the initial state. The cost function is

J = /D Y (30)

and the Hamiltonian is given by
vV

H=14+Ap(T - D)W,
+/\thin‘y+/\7(n~cos7)€~, (31)

The 1%%-order necessary conditions lead to the ad-
joint equations

Ap = —0H/OE
Ap = —38H/0h (32)
€Ay = —0H/

The optimal control is found from
n" = arg min H (33)

The solution to this problem is known to have three
segments: an initial rapid dive through the transonic
regime, a slow energy climb, and a rapid ascent to
meet the terminal condition. Here we focus on the
rapid dive. On the fast time-scale, the dynamics of
Eq. (29) and Eq. (32) form the HTPBVP

E'=¢(T-D)Y
h' = Vsin~y
¥ = &(n* - cos)
(34)
)\}5 = —edH/OF
Ay, = —0H/0h
N = —9H/d~

where H now refers to the Hamiltonian evaluated at
n = n*. The zeroth-order approximation is found by
setting ¢ = 0 which leads to the reduced problem

R = Vsin(y), {0} = hg
7 = &(n" — cos(v)), v(0) = Yo
(35)
)';z = —8H/6h, limfw)oo Ap = /\k,sq

Ny = =0H/8, lim, o0 Ay = Ay,

where E = E; and Ap = AE.o are constants.

The modified sweep method is demonstrated for
a time interval of 125sec with Ey = 14700 m and
Ago = —0.066935753. The basis vectors are taken
to be the eigenvectors of the Jacobian of Eq. (35) at
the equilibrium point and the initial value of ¢,(t)
is taken to be zero. For this problem the initia)
states are h(0) = 10668 m and 7(0) = 0.235rad.
The final adjoints that correspond to equilibrium are
An(ty) = 0and A\, (t;) = —1.355. Figures 5 - 7 show
the first three forward sweeps for the states A and
v and the adjoints A, and Ay alongside the exact
solution. It can be seen that with each successive
forward sweep that the final values of the adjoints
An(tr) and Ay(t) get closer to their known final
values. This trend continues with more sweeps, but
later iterations are not shown because the changes
are too small to be noticeable on the plots. It can
be seen that no unstable behavior Is present in any
of the sweeps, including the first,. Furthermore, with
each sweep the final values of the adjoint approach

*their known final values, although the convergence is

very slow. A topic of continued research is the slow
convergence of this problem.

Comments on the Solutions

One of the difficulties with indirect methods for
the solution of HTPBVP’s is that errors made in
the unknown initial adjoints tend to be amplified
rather than attenuated. Since unstable dynamics are
present, there often is difficulty in computing a nu-
merical solution. However, it can be seen from both
examples that trajectories for all iterations show no
unstable behavior. In particular, it is seen that even
for the first few iterants that errors made in the ad-
joints leads to forward integrations that approach a
constant.

Conclusions

The singular perturbation approach was applied
to separate the slow and fast dynamics for a two
time-scale optimal control problem. The zeroth-
order approximation to the problem in the initial
boundary layer is an infinite horizon problem on the
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fast time-scale. The proposed method of solution
for an infinite horizon regulator problem is a new
indirect method called the modified sweep method.
To demonstrate the effectiveness of modified sweep-
ing, two examples were studied. Tisphe method pos-
sesses two important features. First, none of the
sweeps exhibit any unstable behavior. Second, con-
verged solutions are known to satisfy the original
equations and boundary conditions.
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