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The Shuttle's two-dimensional entry trajectory planning method is extended to three-

dimensions. Both angle of attack and angle of bank variations are used to control the

entry trajectory. The trajectory planning is done with a third-order system of di�erential

equations using the drag and lateral accelerations as intermediate controls. The reduced-

order planning problem is solved as an optimal control problem. The state and control

variables not involved in the planning are computed in a second step.

Introduction

A new generation of reusable launch vehicles and
reusable orbit transfer vehicles are being developed. It
seems likely that the entry guidance requirements for
a reusable launch vehicle will be, as they are for the
Shuttle, to steer the vehicle on a feasible trajectory { a
trajectory within the entry corridor, de�ned by heat-
ing, acceleration, dynamic pressure and controllability
limits { that achieves the speci�ed target condition
within the speci�ed error margin. The Shuttle descent
trajectory planning and guidance is composed of an
entry phase and a terminal area energy management
(TAEM) phase. The speci�ed target condition for the
entry phase is a longitude, latitude point at a certain
Mach number. Achieving this target condition with
su�cient accuracy (about two nautical miles) ensures
a successful TAEM. The entry capability of reusable
launch vehicles (RLVs) and orbital transfer vehicles
(OTVs) would be signi�cantly enhanced relative to
that a�orded by Shuttle-type entry guidance, if the
following entry planning capabilities can be attained.

1. Trajectory planning to meet both downrange and
crossrange objectives precisely. The reference tra-
jectory is planned so as to reach the desired target
condition, and also to pass over desired intermedi-
ate points (i.e. waypoints). The latter capability
may be required, for example, to avoid heavily
populated areas during overland 
ight. In con-
trast the reference trajectory planning for the
Shuttle entry guidance only considers the down-
range objectives; crossrange objectives are han-
dled less precisely through bank reversal logic.
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2. Use of both angle of attack and angle of bank
as commanded variables to achieve guidance ob-
jectives. The Shuttle entry guidance �xes the
angle of attack pro�le for trajectory planning
and only uses minor modi�cations in tracking to
smooth out transient behavior during bank rever-
sals. While this simpli�es the guidance logic, it
limits entry capability. It is true that heating con-
straints dictate high angle of attack early in the
entry and that it is desired to be on the front side
of the L=D curve at the initiation of the termi-
nal area energy management phase; nonetheless,
these requirements still leave freedom in the an-
gle of attack pro�le that can be used to enlarge
the landing footprint, increase guidance accuracy,
and minimize bank reversals.

3. Onboard rapid trajectory planning to achieve
greater capability and autonomy for both nominal
and abort missions. With near real-time onboard
trajectory planning, an RLV can be much more
responsive to trajectory dispersions and mission
changes. Such responsiveness will enhance per-
formance and safety.

In this paper we develop a trajectory planning ap-
proach that achieves the desired capabilities. Our
trajectory planning approach is a direct generalization
of the trajectory planning concept for the Shuttle.1

Entry Planning Problem
Entry Dynamics

The state space for the translational motion (i.e.,
the position-velocity space) is 6-dimensional. Since we
will model the entry dynamics as time-independent,
we can consider 5 state variables to be functions of
a sixth state variable, if this sixth state variable is
strictly monotonic along the trajectories of interest.
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We shall consider 5 state variables as functions of the
strictly decreasing energy E de�ned by

E =
1

2
V 2 �

�
�

r
� �

rs

�
(1)

where V is the velocity magnitude, r and rs are the
radial distances from the planet center to the vehicle
center of mass and the planet surface, respectively, and
� is the gravitational constant. This is an appropriate
formulation for the entry problem since the terminal
conditions are given at an energy value, whereas time
plays no role.
Denoting d(�)=dE by (�)0 and using (�)0 =

(1= _E)d(�)=dt, the translational equations of motion8

for the center of mass of an unpowered vehicle of con-
stant mass 
ying over a non-rotating spherical planet
with a stationary atmosphere take the form
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where � is the longitude, � is the latitude, 
 is the 
ight
path angle, and � is the heading angle with � = 0
corresponding to north. The bank angle � is de�ned
such that the lift vector is in the vertical plane at zero
bank. The acceleration due to gravity is g = �=r2. L

and D represent the lift and drag accelerations (spe-
ci�c forces) and are given by

L =
1

2
�(r)V 2 � S

m
� CL(�; V; r)

D =
1

2
�(r)V 2 � S

m
� CD(�; V; r)

(3)

where �(r) is the density as a function of the alti-
tude, CL(�; V; r) and CD(�; V; r) are the lift and drag
coe�cients, S is the reference area, and m is the ve-
hicle mass. The �ve state variables take values in the
ranges: 0 � � < 2�, ��=2 < � � �=2, �� < � � �,
r � rs and �� < 
 < �.

Vehicle and Control Constraints

The vehicle constraints on the maximum dynamic
pressure, aerodynamic acceleration, and heating rate

are given by

q = 1
2
�V 2 � qmax

A = (D2 + L2)1=2 = D(1 + L=D)1=2 � Amax

_Q = c
p
�V 3 � _Qmax

(4)

The angle of attack � and the angle of bank � are
taken to be the controls. There may be restrictions
on the values of both controls. In this paper we only
consider energy-dependent bounds on �; namely, we
require that �(E) 2 [�min(E); �max(E)].

Problem Statement

To simplify notation, let x = (�; �; �; r; 
) denote
the state. The entry dynamics are expressed concisely
as x0 = f(x; �; �). The target longitude �f and lati-
tude �f are given at a speci�ed �nal energy Ef ; these
speci�cations are represented as terminal equality con-
straints 	(x(Ef )) = (�(Ef ) � �f ; �(Ef ) � �f )

T =
(0; 0)T . We note that the �nal heading angle could
be speci�ed also.
The entry trajectory planning problem is: given the

state x(E0) at an initial energy E0, the terminal con-
straints, and the vehicle constraints, determine feasible
controls (�(E); �(E)) on the interval [E0; Ef ]. Feasi-

ble means that the state trajectory and the controls
satisfy the boundary conditions and the vehicle and
control constraints.

Existence and Uniqueness of a Solution

For each initial condition, there is a 5-dimensional
reachable set R(Ef ;x(E0)) of terminal states con-
tained in the 5-dimensional terminal energy slice, de-
�ned byE = Ef , of the 6-dimensional state space. The
terminal conditions are two independent constraints
on the �nal state and de�ne a 3-dimensional termi-

nal manifold in the terminal energy slice of the state
space. If the intersection of the terminal manifold and
the reachable set is empty, then there is no solution
to the entry problem. If the intersection is non-empty,
then a solution exists. In this case, the solution typ-
ically will not be unique, unless the intersection is a
single point on the boundary of the reachable set, e.g.,
the maximum range solution.

Soft Constraints

In cases where there are multiple solutions to the en-
try problem, one can impose additional speci�cations
to distinguish and choose between them. At each en-
ergy and at each magnitude of the bank angle, there
is a minimum vertical component of lift

(L cos�)min =

�
g � V 2

r

�
(5)

dictated by the equilibrium glide boundary; below
this minimum vertical lift the vehicle cannot gener-
ate enough lift force to balance the e�ective weight.
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For each value of �, there is a maximum altitude
that corresponds to the equilibrium glide boundary.
The vehicle does not have enough control authority to
sustain level 
ight above this altitude, although tran-
sient excursions are possible. By staying within the
equilibrium glide boundary, there is excess vertical lift
capability to compensate for trajectory dispersions.

In addition to keeping the heating rate _Q below a
speci�ed upper limit it is desirable to minimize the
heat load

Q =

Z Ef

E0

_Q

�
dE

dt

��1
dE (6)

This is accomplished by 
ying on the active vehicle
constraint boundary { dynamic pressure, heating rate,
or aerodynamic acceleration { for much of the trajec-
tory, which shortens the 
ight time.4 On the other
hand, to accommodate dispersions it is desirable for
the trajectory to be away from the constraint bound-
aries. The most desirable entry trajectory is some
compromise between minimizing the heat load and
leaving margin for dispersions.

Shuttle 2D Trajectory Planning

The onboard entry trajectory planning for the U.S.
Space Shuttle Orbiters1 considers only the longitudinal
motion. Consider 
ight in the equatorial plane so that
� = � and � = 0. Assuming that cos 
 = 1 and
that r(E) = r̂(E), where r̂ is an estimate of the radial
position pro�le, we have

�0 = �1

r̂

�
1

D

�
(7)

For the Shuttle the bank angle is the primary entry
trajectory control; the angle of attack assumes a �xed
pro�le for planning. For planning purposes, the drag
acceleration D rather than the bank angle is consid-
ered to be the control. Under the assumptions, the
longitude depends only on the drag pro�le, i.e., the
drag acceleration as a function of E. In fact, by us-
ing a piecewise quadratic function of E, the Shuttle
trajectory planning is done analytically. The vehicle
constraints can all be represented as drag acceleration
constraints. An entry corridor can be plotted in the
drag versus energy plane. At each energy, there is
a maximum drag dictated by the active vehicle con-
straint. There is also a minimum drag dictated by the
zero bank equilibrium glide inequality

L �
�
g � V 2

r

�
(8)

With � and r given as functions of E, there is a unique
value of L=D for each value of E. Thus we have

Dmin = Lmin

�
L

D

��1
=

�
g � V 2

r

��
L

D

��1
(9)

Once the drag pro�le has been determined, the other
trajectory and control information can be computed.
The �rst and second derivatives of the drag accelera-
tion with respect to energy provide algebraic relations
satis�ed by the state and control variables. At each en-
ergy, with the angle of attack given, r can be extracted
from the drag model. The D0 and D00 equations can
then be solved for 
 and (L=D) cos�. The magnitude
of � can be extracted from (L=D) cos�.

Reduced-Order 3D Trajectory Planning

Reduced-order system

Under the same approximations

r(E) = r̂(E)

cos 
 = 1
(10)

we propose a similar approach for trajectory planning
in both the longitudinal and latitudinal dimensions,
thus extending the Shuttle trajectory planning. At a
minimum, we would need to employ the di�erential
equations for longitude and latitude. In addition to
drag, we could treat the heading angle � as a control.
However, it is not clear what values of � would lead
to a feasible entry trajectory. By including the di�er-
ential equation for the heading angle, we can instead
treat the lateral acceleration L sin� as the second con-
trol. The drag and lateral accelerations are perhaps
the most natural controls for generalizing the Shuttle
trajectory planning. The control (L=D) sin� is, how-
ever, a little more convenient and we shall use it. Thus
the reduced-order system for trajectory planning is

�0 = � sin�

r̂ cos�

�
1

D

�

�0 = �cos�

r̂

�
1

D

�

�0 =
1

V 2

�
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D

�
� sin� tan�

r̂

�
1

D

�
(11)

The reference radius need not be constant; it may be
a function of E. It is important to emphasize that the
approximations, Eqs. (10), are only used when evalu-
ating �0, �0 and �0. We have essentially de�ned the
small parameter � = (r � r̂)=r̂, employed the expan-
sion r�1 = r̂�1(1+�+ : : :), and written the di�erential
equations for the zeroth-order approximations to �, �
and �. Once �, �, �, D, and (L=D) sin� are deter-
mined, an extraction algorithm, described later, will
be used to determine the corresponding values of r, 
,
� and �. The extracted values of r and 
 in general
will not be r̂ and 0, respectively.
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Admissible control set

We need to de�ne the admissible set of values of the
intermediate controls D and (L=D) sin�. The �rst
step is to express the vehicle constraints as constraints
on the drag acceleration. The dynamic pressure, aero-
dynamic acceleration, and heating rate constraints
take the form

D � qmaxSCD(�;E; r̂)

D � Amax(1 +
L
D
(�;E; r̂))�1=2

D � _Qmax
CDS

2mc2V 2(k�1)

(12)

We approximate r by r̂ in these constraints. Then
at each value of the energy in the range [E0; Ef ], the
drag constraints depend only on �. We now describe
the process for generating the admissible set of values
of the controls (D; (L=D) sin�) at each value of E. An
example of the admissible set for a particular value of
E is shown in Fig. 1.
For a given value of � 2 [�min; �max], the maximum

drag acceleration, Dmax, is the least upper bound dic-
tated by the three drag constraints. For the same value
of �, we compute the lift-to-drag ratio L=D. Next we
plot the (Dmin; (L=D) sin�) curve generated by di�er-
ent values of � according to

Dmin = g�V 2=r̂

(L=D) cos �

L
D
sin� = L

D
(1� cos2 �)1=2

(13)

The �rst equation is derived from the level-
ight equi-
librium glide condition. With L=D �xed by the value
of �, specifying � determines the minimum value of D
at which the lift force will balance the e�ective weight,
m(g � V 2=r), and also determines the lateral acceler-
ation L sin�, or equivalently, (L=D) sin�. We start
with � = 0 and work up to the value of � for which
Dmin = Dmax; larger values of � are not admissible.
The curve for negative values of � is just the re
ection

about the D-axis of curve for positive �. Repeating
these calculations, for each value of �, of Dmax and
the curves of (Dmin; (L=D) sin�), generates the ad-
missible set for a given energy.
The maximum value of drag and the maximum value

of (L=D) sin� is calculated at a speci�c values of �,
the curve through these points is labeled \max drag
curve". Observe that with decreasing values of � the
range for D and L=D sin� is becoming smaller. In the
example, �min is the � corresponding to (L=D)max.
If �min was less than the values for (L=D)max, then
the maximum L=D point on the maximum drag curve
would not correspond to �min. The largest admissible
set has a boundary on the maximum L=D equilibrium
glide curve, since the equilibrium glide curves moves
inward for lower values of � on the front side of the
L=D curve. Repeating these calculations for each en-
ergy will generate the entire admissible set.
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Fig. 1 Admissible Controls

Optimal control formulation

The re-entry trajectory planning problem will be
solved as an optimal control problem of the following
form: Minimize the performance index

J = �(x (Ef ) ; Ef ) +

Z Ef

E0

L(x(E); u(E); v(E); E)dE

(14)
subject to the following conditions:
- the di�erential constraints
- initial state conditions

x(0) = x0 (15)

- the terminal state conditions

	(x(Ef ); Ef ) = 0 (16)

- the algebraic state and control constraints

g(x(E); u(E); v(E)) � 0 ; 8E 2 [E0; Ef ] (17)

where x = (�; �; �), u = (u1; u2) = (D;L=D sin�),
and v = (v1; v2). Along with the three reduced or-
der equations, the two additional di�erential equations
u01 = v1 and u02 = v2 are included in the di�erential
constraints.
A variety of speci�c formulations are possible, de-

pending on whether the various constraints are han-
dled as soft (i.e, in the performance index) or hard (as
equality or inequality constraints). A versatile perfor-
mance index is de�ned by

�(x(Ef )) = a1(�(Ef )� �f )
2 + a2(�(Ef )

��f )2 + a3(�(Ef )� �f )
2

L(x(E); u(E); v(E); E) = a4
Vp
D
+ a5

�
v1(E)

2 + v2(E)
2
�

+a6

�
b1F

2
1 + b2

1
F2

+ b3F3

�
(18)
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where a1 through a6 and b1 through b2 are non-
negative constants. The constants a1 through a3 are
non-zero if the terminal conditions are treated as soft
constraints rather than equality constraints. The con-
stant a4 is non-zero if the heat load is included in
J . We note that V=

p
D is proportional to dQ=dE.

When a5 is non-zero, the rates of change of u1 and
u2 with respect to energy are penalized. The constant
a6 is non-zero when the condition that (u1, u2) be-
long to the admissible control set is handled as a soft
constraint. The functions F1, F2, and F3 are represen-
tative of the maximum drag, �max equilibrium glide,
and (L=D)max equilibrium glide constraint curves of
the admissible set and constitute the boundaries of the
admissible set as shown in Fig. 2. One of these func-
tions is equal to one when (u1, u2) is on the boundary
of the admissible set. The equations for F1, F2, and
F3 that approximate the boundaries of the admissible
set are

F1 = u2(E)

P1(u1)

F2 =
�

u1(E)�P (3)
n

(E)

P
(1)
n (E)�P

(3)
n (E)

�4
+
�

u1(E)�P (3)
n

(E)

P
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n (E)�P

(3)
n (E)

�2

+
�

u2(E)

P
(2)
n (E)

�2
+
�

u2(E)

P
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n (E)

�4
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�

u1(E)�P (6)
n

(E)

P
(4)
n (E)�P

(6)
n (E)

�4
+
�

u1(E)�P (6)
n

(E)

P
(4)
n (E)�P

(6)
n (E)
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+
�

u2(E)

P
(5)
n (E)
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+
�
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P
(5)
n (E)

�4
(19)

where P1(u1) is a linear �t of u1 to u2 along the

max drag boundary. P
(1)
n (E) through P

(6)
n (E) are

nth-order polynomials in E. P
(1)
n (E), P

(2)
n (E), and

P
(3)
n (E) �t the minimum drag, maximum (L=D) sin�,

and maximum drag occurring on the maximum alpha

boundary. P
(4)
n (E), P

(5)
n (E), and P

(6)
n (E) �t the mini-

mum drag, maximum (L=D) sin�, and maximum drag
occurring on the (L=D)max equilibrium glide bound-
ary (see Fig. 2).

Determining remaining states and controls

We used a reduced-order model to simplify, and
reduce the numerical sensitivity of, the trajectory com-
putation. The reduced-order trajectory planning de-
termines �, �, �, D, and (L=D) sin� as functions of
E. The remaining state and control variables can be
determined from this information and the di�erential
equations.

Di�erentiating the model for the drag acceleration,
with respect to E, and neglecting derivatives of the
drag coe�cient, yields

D0 = 2D
V 2 +

�
2g
V 2 +

1
H

�
sin 
 (20)
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Fig. 2 Illustration of approximated sections for

the admissible set boundaries.

Since the control rate D0 is calculated in the opti-
mal control problem, there is enough information with
r(E) = r̂(E) to determine 
(E). Using a backward
�nite di�erence on 
 to approximate 
0(E0), we then
have four algebraic equations from which to extract
the four unknowns r, 
, �, and � for the initial energy
E0. Future values of r and 
 are determined by inte-
grating the r0 and 
0 equations. The controls � and �

are then calculated algebraically at each value of E.

Results and Discussion

As a �rst step in assessing the e�cacy of our plan-
ning approach, we discuss and present results that
were obtained by solving the optimal control problem
with a general purpose optimization code: the Sparse
Optimal Control Software (SOCS).10 We envision that
a special purpose optimization algorithm would be
used for the onboard implementation of our approach
for faster computation and reduced code size. An ac-
curacy assessment by comparison of our reduced-order
planning solutions to full-order planning solutions is
planned for future work. Here we shall describe our
computational experience with di�erent formulations
of the optimal control problem and present a partic-
ular solution. We also present the results of applying
the extraction algorithm to the same solution.

SOCS solves the optimal control problem using a di-
rect transcription method. State and control variables
are discretized to reduce the optimal control problem
into a nonlinear programming problem. The solution
to the sparse nonlinear program is then determined
using sequential quadratic programming. SOCS is ca-
pable of generating a linear initial guess from given
initial and �nal controls, or a subroutine can be writ-
ten to generate an initial guess.

Reduced-order planning algorithm

The reduced-order planning algorithms for the var-
ious formulations were written primarily in FOR-
TRAN. Performance testing and evaluation of the pro-
grams were done on a Pentium II 300 MHz PC with
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64 Mb of RAM running Windows 95. It was found
that the most signi�cant source of di�culty and com-
putation time, for SOCS, was the enforcement of hard
constraints for the admissible set. This formulation
typically required 2-5 minutes of computation time
which did not guarantee a feasible solution from SOCS.
An addition of soft constraints on the admissible set
to the performance index, improved the reliability of
the program by keeping solutions away from the non-
convex �max equilibrium glide boundary. Once the
hard constraints on the admissible set were removed,
most of the reduced order trajectories required less
than a minute of computation time with a crude ini-
tial guess. The program was capable of �nding an
optimal solution for a variety of initial and �nal con-
ditions, performance index coe�cients, initial guesses,
and constraint formulations.

Of all the formulations tested, the formulation that
gives the best results in terms of speed, reliability, and
solution properties, uses hard constraints on �(Ef ),
�(Ef ) and the two control rates, while the coe�cients
a1 and a2 of the general performance index Eq.(18) are
set to zero. Due to the non-convex shape of the admis-
sible set, the constraints on the admissible set are best
replaced with soft constraints. Hard constraints on
minimum alpha and maximum drag boundaries, can
be enforced as redundant constraints to ensure that
the trajectory does not violate those boundaries of the
admissible set. The soft constraint on the admissible
set and soft constraints on the control rates smoothes
the control trajectory such that rapid variations from
from one boundary of the admissible set to another
do not occur. Having both hard and soft constraints
on the control rate also minimizes the control power
requirements and eliminates the occurrence of short
peaks in control rates.

The reduced-order algorithm for 3D entry trajectory
planning is applied to a vehicle model of a reusable
second stage supplied by Boeing. The reusable second
stage has a mass of 85000 lbs, reference area of 1300
ft2, maximum CL of 3.6, and a maximum L=D of 8.0 at
an angle of attack of 10 degrees. To illustrate the capa-
bilities of the trajectory planner, an example problem
with initial conditions of zero degrees longitude, lati-
tude, and heading and a �nal destination of 12 degrees
longitude and 6 degrees latitude is used. The coe�-
cients given for the performance index, Eqs.(14) and
(18), are a1 = a2 = a3 = 0, a4 = 5:55 � 10�4,
a5 = 3:85 � 10�4, a6 = 0:385, b1 = 0:7, b2 = 4,
and b3 = 0:7. The initial/�nal altitudes and veloci-
ties are set to rini = 2:7� 10+5 ft, rfinal = 9:0� 10+4

ft, Vini = 17500 ft/s, and Vfinal = 3000 ft/s and lin-
early interpolated to obtain the reference radius and
energy. The constraints on normal acceleration, dy-
namic pressure, and maximum angle of attack are set
to qmax = 600 lb/ft2, Amax = 128 ft/s2, �max = 40
degrees, and �min = � for (L=D)max.

Fig. 3 shows the admissible set of intermediate con-
trols and the particular control trajectory for the
reusable second stage vehicle model and speci�ed
boundary conditions. Note that the trajectory lies
within the admissible set. Fig. 4 shows the trajectory
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in the longitude, latitude plane along with a plot of
the heading angle as a function of normalized energy.
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Extraction algorithm

Once the optimal solution is obtained from the
reduced-order planning the remaining states and con-
trols have to be extracted. The complete state and
control information is then used to perform an open
loop simulation to determine the robustness and con-
sistency of the extracted information with the reduced-
order solution. The extraction algorithm described in
the previous section was coded in MATLAB. Fig. 5
shows the state and control variables obtained from
the extraction algorithm, given the reduced order so-
lution from Fig. 3 and 4. From the extracted gamma
plot it can be seen that throughout the entire trajec-
tory, the 
ight path angle remains relatively small and
does not oscillate. The altitude plot shows that the
pro�le follows a trajectory that is desirable for track-
ing because it does not oscillate much.

To perform the open-loop simulation, the controls
along with an initial altitude and 
ight path angle
from the extraction algorithm, are used to integrate
the �ve equations of motion (2). A comparison of
the di�erences between the downrange and crossrange
trajectories from the simulation and the reduced-order
planning are shown in Fig. 6. For the trajectory shown,
the errors between the simulation and optimal solution
for �(Ef ) and �(Ef ) are 0.136 and 0.071 degrees re-
spectively. Plots of the two pseudo-controls D, and
(L=D) sin� from the optimal solution and simulation
are shown in Fig. 7. From this plot it can be seen that
the drag pro�le shows the most di�erence between the
reduced-order solution and the pro�le obtained by in-
tegration. These consistency checks do not determine
the accuracy of our solution. A comparison with full-
order solutions is needed for this.

Conclusions

The Shuttle's two-dimensional entry trajectory
planning method has been extended to three-
dimensions. Both angle of attack and angle of bank
variations are used to control the entry trajectory.
The trajectory planning is performed with a third-
order system of di�erential equations using the drag
and lateral accelerations as intermediate controls. The
reduced-order planning problem is solved as an opti-
mal control problem. The state and control variables
not involved in the planning are extracted from the
planning solution in a second step.
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