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The Space Shuttle’s two-dimensional entry trajectory planning method is extended to
three dimensions. Both angle-of-attack and angle-of-bank variations are used to control
the entry trajectory. The trajectory planning is done with a third-order system of dif-
ferential equations using the drag and lateral accelerations as intermediate controls. The
reduced-order planning problem is solved first in a simple manner with a fixed angle-of-
attack profile and second as an optimal control problem. The capability is demonstrated
for planning a trajectory so that a desired final heading angle is achieved. A method for
extracting dynamically consistent values for the state and control variables not involved in
the reduced-order planning is presented. Finally, a comparison with optimal solutions to
a full-order entry problem is given, illustrating that the solution from the reduced-order
planning has desirable features as a reference trajectory for tracking.

Introduction

Next generation reusable launch vehicles (RLVs)
and orbital transfer vehicles (OTVs) will benefit from
a greater level of autonomy and capability relative
to current reusable launch vehicles. In this paper,
further developments of an onboard entry trajectory
planning approach1 are presented. The entry trajec-
tory planning onboard the U.S. Space Shuttle orbiter
considers only the longitudinal motion in planning a
drag profile that will achieve the desired downrange.2

Our approach considers longitudinal and lateral mo-
tion and generates a three-dimensional (3D) trajectory
that achieves the desired downrange and crossrange.
The planning method, based on a reduced-order model
of the translational motion, generates drag and lat-
eral acceleration profiles. For guidance, the profiles
would be flown using a tracking law to generate angle-
of-attack and angle-of-bank commands to the control
system. An appropriate tracking law has been pre-
sented elsewhere.4 The profiles can also be revised
during flight using the same planning method.
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Entry Planning Problem
Entry Dynamics

Energy is used in place of time as the independent
variable. The energy E is defined by

E =
1
2
V 2 −

(
µ

r
− µ

rs

)
(1)

where V is the velocity magnitude, r and rs are the
radial distances from the planet center to the vehicle
center of mass and the planet surface, respectively, and
µ is the gravitational constant.

Denoting d(·)/dE by (·)′ and using (·)′ =
(1/Ė)d(·)/dt and Ė = −DV , the translational equa-
tions of motion5–7 for the center of mass of an unpow-
ered vehicle of constant mass flying over a nonrotating
spherical planet with a stationary atmosphere take the
form
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where θ is the longitude, φ is the latitude, γ is the flight
path angle, and ψ is the heading angle with ψ = 0
corresponding to flight due east. The bank angle σ
is defined such that the lift vector is in the vertical
plane at zero bank. The acceleration due to gravity
is g = µ/r2. L and D represent the lift and drag
accelerations (specific forces) and are given by

L =
1
2
ρ(r)V 2 · S

m
· CL(α, V, r)

D =
1
2
ρ(r)V 2 · S

m
· CD(α, V, r)

(3)

where ρ(r) is the density as a function of the altitude,
CL(α, V, r) and CD(α, V, r) are the lift and drag coef-
ficients, S is the reference area, and m is the vehicle
mass. There are only five equations, because with en-
ergy as the independent variable the velocity V can be
determined from r and E.

Vehicle and Control Constraints

The vehicle constraints on the maximum dynamic
pressure, aerodynamic acceleration, and heating rate
are given by

q = 1
2ρV 2 ≤ qmax

A = (D2 + L2)1/2 = D(1 + L/D)1/2 ≤ Amax

Q̇ = c
√

ρV 3 ≤ Q̇max

(4)

The angle-of-attack α and the angle-of-bank σ are
taken to be the controls. There may be restrictions
on the values of both controls. In this paper we only
consider energy-dependent bounds on α; namely, we
require that α(E) ∈ [αmin(E), αmax(E)].

Problem Statement

To simplify notation, let x = (θ, φ, ψ, r, γ) denote
the state. The entry dynamics are expressed con-
cisely as x′ = f(x, α, σ). The target longitude θf and
latitude φf are given at a specified final energy Ef ;
these specifications are represented as terminal equal-
ity constraints Γ(x(Ef )) = (θ(Ef )−θf , φ(Ef )−φf )T =
(0, 0)T . We note that the final heading angle could be
specified also. We assume there is an allowable interval
of final altitudes and our trajectory planning approach
addresses this requirement, but we do not include this
requirement in our problem statement.

The entry trajectory planning problem is: given the
state x(E0) at an initial energy E0, the terminal con-
straints, and the vehicle constraints, determine feasible
controls (α(E), σ(E)) on the interval [E0, Ef ]. Feasi-
ble means that the state trajectory and the controls
satisfy the boundary conditions and the vehicle and
control constraints.

Soft Constraints

In cases where there are multiple solutions to the en-
try problem, one can impose additional specifications

to distinguish and choose between them. At each en-
ergy and each magnitude of the bank angle, there is a
minimum lift

(L cos σ)min =
(

g − V 2

r

)
(5)

dictated by the equilibrium glide boundary; below this
minimum lift the vehicle cannot generate enough lift
force to balance the effective weight. For each value
of α, there is a maximum altitude that corresponds to
the equilibrium glide boundary. The vehicle does not
have enough control authority to sustain level flight
above this altitude, although transient excursions are
possible.

In addition to keeping the heating rate Q̇ below a
specified upper limit it may be desirable to minimize
the heat load

Q =
∫ Ef

E0

Q̇

(
dE

dt

)−1

dE (6)

depending on the type of thermal protection used for
the vehicle. Minimizing the heat load is accomplished
by flying on the active vehicle constraint boundary –
dynamic pressure, heating rate, or aerodynamic accel-
eration – for much of the trajectory, which shortens
the flight time. On the other hand, to accommodate
dispersions it is desirable for the trajectory to be away
from the constraint boundaries. The most desirable
entry trajectory is some compromise between minimiz-
ing the heat load and leaving margin for dispersions.

Coordinate Redefinition

Because we are not accounting for planet rotation,
the “equatorial” plane can be defined as any plane
containing the planet center. For trajectory planning
when the initial and target positions are given, it is
convenient to define the equatorial plane as the plane
containing the initial position of the vehicle (more
precisely the center of mass position) and the target
position, with the “north pole” oriented so that the
shortest distance to the target is in the easterly direc-
tion. Henceforth, we shall refer to this plane as the
target plane. The initial and target positions will al-
ways have φ = 0, which is the equation for the target
plane. The corresponding heading angle is measured
from the direction corresponding to “east” in this tar-
get coordinate frame.

Space Shuttle 2D Trajectory Planning

The entry guidance for the Space Shuttle2 is di-
vided into three phases: hypersonic, terminal area
energy management (TAEM), and approach and land-
ing. The entry guidance targets to a desired TAEM
interface condition during the hypersonic phase; this
condition is specified by a longitude, latitude, altitude,
and a speed. The specified speed is about Mach 2.
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(What we are calling the hypersonic entry phase actu-
ally includes supersonic flight.) Note that, in general,
the length s of a trajectory is given by

s =
∫ tf

0

V dt = −
∫ Ef

E0

dE

D(E)

= −
∫ Vf

V0

dV

D + g sin γ

(7)

If the required trajectory length were known, a drag
acceleration profile could be specified that is consistent
with this trajectory length. The onboard trajectory
planning for the Space Shuttle assumes that the hy-
personic portion of the entry trajectory is a great circle
arc extending from the radial line containing the initial
or current vehicle position to the radial line contain-
ing the desired TAEM interface position. The radial
distance (from the Earth center) corresponding to the
TAEM interface altitude, denoted by rf , is the as-
sumed radius of the great circle arc. By representing
D(E) as a piecewise quadratic function of E, the Space
Shuttle trajectory planning is done analytically. (For
most of the drag segments, V rather than E is used
as the independent variable in the Space Shuttle for-
mulation. Because γ = 0 for the assumed great circle
arc, the relation between trajectory length and drag
is equally simple for the two choices of independent
variable. For flight paths for which g sin γ is not neg-
ligible compared to D, the independent variable E is
preferred.)

Flying an arbitrary drag acceleration profile may
cause violations of the constraints. Fortunately, the
vehicle constraints can all be represented as drag accel-
eration constraints. An entry corridor can be plotted
in the drag versus energy plane. At each energy, there
is a maximum drag dictated by the active vehicle con-
straint. There is also a minimum drag dictated by the
zero bank equilibrium glide condition

L =
(

g − V 2

r

)
(8)

The Space Shuttle trajectory planning assumes a fixed
angle-of-attack profile. With α given as a function of
E and r = rf , there is a unique value of L/D for each
value of E. Thus we have

Dmin = Lmin

(
L

D

)−1

=
(

g − V 2

r

) (
L

D

)−1

(9)

If D is less than Dmin, there is insufficient lift to
achieve γ′ ≥ 0, indicating a lack of maneuverability.
By selecting a drag profile that lies within the entry
corridor, satisfaction of the vehicle constraints and ma-
neuverability to accommodate dispersions is assured.

Once the drag profile has been determined, the other
trajectory and control information, consistent with
this drag profile, can be computed. The first and sec-
ond derivatives of the drag acceleration with respect

to energy provide algebraic relations satisfied by the
state and control variables. At each energy, with the
angle-of-attack given, r can be extracted from the drag
model. The D′ and D′′ equations can then be solved
for γ and (L/D) cos σ. For tracking, (L/D) cos σ is
viewed as the commanded variable; bank angle modu-
lation is the primary means of achieving the command,
but α modulation is also used as a secondary means.

In terms of Eqs. (2), the Space Shuttle planning can
be viewed as follows. The great circle arc assumption
used for the Space Shuttle corresponds to the condi-
tions ψ = 0, φ = 0, cos γ = 1 and r = rf , and the first
equation of Eqs. (2) reduces to

θ′ = − 1
rf

(
1
D

)
(10)

and θ is the angular displacement along the great circle
arc, or one can use distance variable R = rfθ.

In general, flying the planned drag acceleration pro-
file will require |(L/D) cos σ| < L/D, and hence,
(L/D) sin σ �= 0 and the heading angle will change.
Furthermore, the initial (or current) heading angle
may not be zero as assumed. Consequently, there
will typically be lateral motion and φ will not be zero.
The Space Shuttle guidance handles this lateral motion
by defining a heading angle corridor and commanding
a bank reversal when a boundary of this corridor is
reached. The lateral motion is thus minimized to the
degree that it can be neglected in planning the drag.
In the following, we develop a planning procedure that
allows for entry trajectories with significant lateral mo-
tion.

Reduced-Order 3D Trajectory Planning

The direct generalization of the Space Shuttle plan-
ning starts with the assumption that the hypersonic
entry flight path evolves on the surface of a sphere,
with center coinciding with the Earth’s center. Let the
radius of the sphere be given by r̂. At a minimum, we
would need to employ the differential equations for lon-
gitude and latitude to plan the motion on this sphere.
In addition to drag, we could treat the heading an-
gle ψ as a variable to be specified. However, it is not
clear what values of ψ would lead to a feasible en-
try trajectory. By including the differential equation
for the heading angle, we can instead treat the lat-
eral acceleration L sin σ as the second variable to be
specified. While conceptually we view the drag and
lateral acceleration components of the total aerody-
namic acceleration (or specific force) as the variables
we plan, the variable (L/D) sin σ is a little more con-
venient than L sin σ and we shall use it.
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Reduced-Order System

The reduced-order system for trajectory planning is

θ′ = − cos ψ

r̂ cos φ

(
1
D

)

φ′ = − sinψ

r̂

(
1
D

)

ψ′ = − 1
V 2

(
L sin σ

D

)
+

cos ψ tan φ

r̂

(
1
D

)
(11)

Although we used flight on the surface of a fixed ra-
dius sphere to motivate our approach, we introduce
an additional degree of flexibility by allowing r̂ to be a
known function of E, not necessarily constant. We do
assume that the flight path angle is sufficiently small
that setting cos γ = 1 causes a negligible error. It
is important to emphasize that the approximations,
r = r̂ and cos γ = 1, are only used when evaluat-
ing θ′, φ′ and ψ′. We have implicitly defined the
small parameter ε = ∆r/r̂, where ∆r = r − r̂, em-
ployed the expansions r−1 = r̂−1(1 + ε + . . .) and
cos γ = 1−γ3/6+. . ., and neglected the O(ε, γ3) terms
in the differential equations for θ, φ and ψ. Once θ, φ,
ψ, D, and (L/D) sin σ are determined, an extraction
algorithm, described later, will be used to determine
the corresponding values of r, γ, α and σ. The ex-
tracted values of r and γ in general will not be r̂ and
0, respectively.

Admissible Control Set

We need to define the admissible set of values of the
intermediate controls D and (L/D) sin σ. The first
step is to express the vehicle constraints as constraints
on the drag acceleration. The dynamic pressure, aero-
dynamic acceleration, and heating rate constraints
take the form

D ≤ qmaxSCD(α,E, r̂)

D ≤ Amax(1 + L
D (α,E, r̂))−1/2

D ≤ Q̇max
CDS

2mc2V 2(k−1)

(12)

We approximate r by r̂ in these constraints. Then at
each value of the energy in the range [E0, Ef ], the drag
constraints depend only on α. The admissible set of
values for the controls (D, (L/D) sin σ) is generated at
each value of E.1 An example of the admissible set for
a particular value of E is shown in Fig. 1.

Feasible Trajectory Planning

A simple method for entry trajectory planning, us-
ing the reduced-order system, follows from the as-
sumptions of a fixed α profile and equilibrium glide
flight. The method is initialized by estimating the re-
quired trajectory length with a great circle arc entry
trajectory at r̄ = (rf + r0)/2. A drag profile then
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Fig. 1 Admissible control set.

is estimated from the trajectory length. The drag
profile is represented by three linear spline segments
with respect to energy. The endpoints of the pro-
file are fixed to desired initial and final drag values
and the second segment is specified as a constant drag
profile. With these constraints and continuity require-
ments, the estimated drag profile is determined by a
one parameter search. The parameter is determined
such that the required trajectory length is achieved.
The vehicle constraints for the fixed α profile can be
satisfied by constraint arcs or adjusting additional pa-
rameters in the drag profile representation. Assuming
a single bank reversal, modeled either by an instanta-
neous change in bank angle sign or a finite duration
canned maneuver, the bank reversal initiation time
can be adjusted iteratively until the integration of the
reduced-order system produces a sufficiently accurate
final longitude and latitude. Equilibrium glide flight
requires that

L

D
cos σ =

1
D

[
g(r̂) − V 2

r̂

]
(13)

and hence the lateral component of L/D can be deter-
mined with

L

D
sin σ =

[(
L

D

)2

−
(

L

D
cos σ

)2
]1/2

(14)

Using the α profile and r = r̂, L/D can be determined
and then the normal and lateral components of lift
can be determined. The estimated drag profile can
be extended, using extrapolation, when additional arc
length is needed during the iterations. The additional
arc length is extrapolated with the equation

si+1 = si + (s0 − r̄θ(Ef )) (15)

where s0 is the initial estimate of the arc length, based
on the great circle arc assumption. The stopping crite-
rion for the iterations is that the final errors in θ and φ
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are within tolerances or that the solution stops improv-
ing. Once the iteration has converged, the required
arc (i.e., trajectory) length is known and a drag pro-
file consistent with this arc length can be constructed
within the constraints.

The most difficult requirements of the simple plan-
ning method are the one parameter searches for the
drag profile and bank reversal. This simple planning
method will generate a feasible trajectory that can ei-
ther be used directly or as a starting solution for the
optimal trajectory planning described in the next sub-
section.

Optimal Trajectory Planning

The entry trajectory planning problem, based on
the reduced-order system, can be posed and solved
as an optimal control problem of the following form:
Minimize the performance index

J = Φ (x (Ef ) , Ef ) +∫ Ef

E0
L(x(E), u(E), v(E), E)dE

(16)

subject to the following conditions:
- the differential constraints
- initial state conditions

x(0) = x0 (17)

- the terminal state conditions

Ψ(x(Ef ), Ef ) = 0 (18)

- the algebraic state and control constraints

g(x(E), u(E), v(E)) ≥ 0 , ∀E ∈ [E0, Ef ] (19)

where x = (θ, φ, χ), u = (u1, u2) = (D,L/D sin σ),
and v = (v1, v2). Along with the three equations
of motion, the two additional differential equations
u′

1 = v1 and u′
2 = v2 are included in the differential

constraints.
A variety of specific formulations are possible, de-

pending on whether the various constraints are han-
dled as soft (i.e., in the performance index) or hard
(as equality or inequality constraints).

A versatile performance index is defined by

Φ = a1(χ(Ef ) − χf )2

L = a2
V√
D

+ a3

(
v1(E)2 + v2(E)2

)
+a4

(
b1F

2
1 + b2

1
F2

+ b3F3

) (20)

where a1 through a4 and b1 through b2 are non-
negative constants. The constraints on the final longi-
tude and latitude are enforced as equality constraints
which eliminates the need for soft constraints on lon-
gitude and latitude. The final heading angle and heat
load are treated as soft constraints. Thus, only the
heading angle appears in Φ and, noting that V/

√
D

is proportional to dQ/dE,8 the heat load is included
in J . The constraints on v1 and v2 are enforced as
both hard and soft constraints. The functions F1,
F2, and F3 are representative of the maximum drag,
αmax equilibrium glide, and (L/D)max equilibrium
glide constraint curves of the admissible set and con-
stitute the boundaries of the admissible set as shown in
Fig. 2.1 The constraints on the admissible set are thus
given by its three boundaries. The two equilibrium
glide boundaries are treated as soft constraints, while
the maximum drag boundary is treated as both a hard
and soft constraint. Figure 2 shows how the three di-
mensional corridor is approximated by the polynomial
fits of P

(1)
n −P

(6)
n and P1 as functions of energy. These

polynomials allow the functions F1, F2, and F3 to vary
accordingly with energy.

n                 n

(P   (E),0)n

(P   (E),0)n

(P   (E),P   (E))

Eq. Glide Max Drag

Max Alpha

(P   (E),P   (E))

(6)

(4)

(1)

(3) (2)

(5)

n                 n

L/Dsino

Drag

P (u  )1    1

Fig. 2 Illustration of approximated sections for
the admissible set boundaries.

Determining Remaining States and Controls

We used a reduced-order model to simplify, and
reduce the numerical sensitivity of, the trajectory com-
putation. The reduced-order trajectory planning de-
termines θ, φ, χ, D, and (L/D) sin σ as functions of
E. The remaining state and control variables can be
determined from this information and the differential
equations.

Differentiating the model for the drag acceleration,
with respect to E, and neglecting derivatives of the
drag coefficient, yields

D′ =
2D

V 2
+

(
2g

V 2
+

1
H

)
sin γ (21)

Since the control rate D′ is calculated in the opti-
mal control problem, there is enough information with
r(E) = r̂(E) to determine γ(E). Using a backward
finite difference on γ to approximate γ′(E0), we then
have four algebraic equations from which to extract
the four unknowns r, γ, α, and σ for the initial en-
ergy E0. Future values of r and γ are determined by
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integrating the r′ and γ′ equations. The controls α
and σ are then calculated algebraically at each value
of E. The dynamic consistency of the extracted con-
trols and states can be checked and updated with a
full-state simulation.

To perform the full-state simulation, the controls
along with an initial altitude and flight path angle
from the extraction algorithm are used to integrate
the five equations of motion (2). To account for errors
in the pseudo-controls, a feedback control is added to
track the reference D and (L/D) sin σ profiles. The
controller will adjust the angle of attack and bank an-
gle based on the error in drag. The angle-of-attack
and bank angle are modulated by the equations

∆α =
CD(Dr − D)

k1
(22)

∆σ = ±(k2∆α − k3(D′
r − D′)) (23)

where the sign of ∆σ is determined by the sign of σ.
The noise introduced by numerical differentiation lim-
its the gain on k3 such that an insignificant amount of
damping is available. Filtering of the D′ information
may allow significantly higher gains to be used.

OTIS
The Boeing Company has developed Optimal Tra-

jectories by Implicit Simulation (OTIS)9 to provide
a general purpose FORTRAN program for simulat-
ing and optimizing trajectories of a wide variety of
aerospace vehicles. The program is designed to simu-
late and optimize trajectories of launch vehicle, air-
craft, missiles, satellites and interplanetary vehicles
with provisions made for free and fixed end constraints,
specified way-points, and path constraints.

OTIS is primarily a three degree of freedom (point
mass, 3 DOF) simulation program for single vehicles.
Options allow for six degree of freedom (6 DOF) simu-
lations and several types of multiple vehicles problems.

Results and Discussion
As a first step in assessing the efficacy of our plan-

ning approach, we discuss and present results that
were obtained by solving the optimal control prob-
lem with a general purpose optimization code: the
Sparse Optimal Control Software (SOCS).10 We en-
vision that a special purpose optimization algorithm
would be used for the onboard implementation of our
approach for faster computation and reduced code size.

SOCS solves the optimal control problem using a di-
rect transcription method. State and control variables
are discretized to reduce the optimal control problem
into a nonlinear programming problem. The solution
to the sparse nonlinear program is then determined
using sequential quadratic programming. SOCS is ca-
pable of generating a linear initial guess from given
initial and final controls, or a subroutine can be writ-
ten to generate an initial guess.

Reduced-Order 3D Planning Algorithm

The reduced-order planning algorithms for the vari-
ous formulations were coded primarily in FORTRAN.
The algorithms were tested and evaluated on a Pen-
tium II 300 MHz PC with 64 Mb of RAM running
Windows 95. The most significant source of diffi-
culty and computation time, for SOCS, was the hard
constraints for the admissible set. This formulation
typically required 2 to 5 minutes of computation time,
which did not guarantee a feasible solution from SOCS.
The addition of soft constraints on the admissible set
to the performance index, improved the reliability of
the program by keeping solutions away from the non-
convex αmax equilibrium glide boundary. Once the
hard constraints on the admissible set were removed,
most of the reduced order trajectories required less
than a minute of computation time with a crude ini-
tial guess. The program was capable of finding an
optimal solution for a variety of initial and final con-
ditions, performance index coefficients, initial guesses,
and constraint formulations.

Of all the formulations tested, the formulation that
gives the best results in terms of speed, reliability,
and solution properties has hard constraints on θ(Ef ),
φ(Ef ) and the two control rates. Due to the noncon-
vex shape of the admissible set, the constraints on the
admissible set are best replaced with soft constraints.
A hard constraint on the maximum drag boundary,
is enforced as a redundant constraint to ensure that
the trajectory does not violate this boundary of the
admissible set. The soft constraint on the admissible
set and soft constraints on the control rates smoothes
the control trajectory such that rapid variations from
one boundary of the admissible set to another do not
occur. Having both hard and soft constraints on the
control rate also reduces the number of bank reversals
and eliminates the occurrence of short peaks in control
rates.

The optimal reduced-order algorithm for 3D entry
trajectory planning is applied to a model of a reusable
second stage vehicle. The reusable second stage has
a mass of 85000 lb, reference area of 1300 ft2, max-
imum CL of 3.6, and a maximum L/D of 8.0 at
an angle-of-attack of 10 degrees. For the numerical
examples, baseline initial conditions of zero degrees
longitude, latitude, and heading and a final destina-
tion of 12 degrees longitude and 6 degrees latitude are
used. The coefficients given for the performance in-
dex, Eqs.(16) and (20), are a1 = 0, a2 = 5.55 × 10−4,
a3 = 3.85 × 10−4, a4 = 0.385, b1 = 0.7, b2 = 4,
and b3 = 0.7. The initial/final altitudes and veloci-
ties are set to r0 = 2.7 × 10+5 ft, rf = 9.0 × 10+4 ft,
V0 = 17500 ft/s, and Vf = 3000 ft/s and linearly inter-
polated to obtain the reference radius and energy. The
constraints on normal acceleration, dynamic pressure,
and maximum angle-of-attack are set to qmax = 600
lb/ft2, Amax = 128 ft/s2, αmax = 40 degrees, and
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αmin = α for (L/D)max.
To illustrate the flexibility of the optimal reduced-

order 3D trajectory planner, several trajectories are
computed with different final heading angles. If the
available energy is greater than the minimum required
to achieve the specified longitude and altitude, a range
of final heading angles can be reached, and it is possi-
ble to specify a final heading angle within this range,
e.g., to align the vehicle with the runway. With the
2D Space Shuttle planner it is not possible to specify
a desired heading angle. The optimal reduced-order
3D planning program allows the final heading to be
specified. Figure 3 shows trajectories generated under
the same conditions, except that various final heading
angles are specified via a penalty term in the cost func-
tion. For this entry problem the feasible final heading
angles range from -20 to 90 degrees. Trajectories with
a shorter downrange requirement allow for a larger
range of feasible heading angles. Short range trajec-
tories have more energy available for maneuvering the
vehicle to a wider range of final heading angles (Fig. 4).
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Fig. 3 Computed long-range trajectories for vari-
ous final heading angles.

A similar analysis can be performed to determine
the crossrange capability. Figure 5 shows various tra-
jectories for a fixed downrange of 18 degrees. The
crossrange varies from -7 to 7 degrees latitude.
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Fig. 4 Computed short-range trajectories for var-
ious final heading angles.
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Fig. 5 Computed trajectories for various cross-
range requirements.

Comparison with OTIS Solution

Figure 6 shows a comparison between entry trajec-
tories computed by the optimal reduced-order planner
and by OTIS. The vehicle and environmental models,
boundary conditions, and dynamic pressure, accelera-
tion, and heating rate constraints are the same. Both
cost functions include heat load. The cost function
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for the reduced-order planner includes soft constraints
to favor flight in the center of the entry corridor and
to limit the rates of change of D and (L/D) sin σ.
The cost function for OTIS has a soft constraint that
limits the rate of change of angle-of-attack. These dif-
ferences in the cost function cause differences in the
corresponding solutions.

While the two trajectories reach the same target, the
details of the trajectories and the control profiles used
to obtain them have differences, especially in the lat-
ter part of the flight after the bank angle changes from
negative to positive values. The results illustrate that,
for a case like this when the available energy is greater
than the minimum required to achieve the desired fi-
nal state, there is more than one feasible trajectory.
The trajectory generated by the optimal reduced-order
planner has little phugoid-like oscillations, stays away
from constraint boundaries, and does not require high
control rates. These features are desirable for tracking.

The reduced-order planner only determines θ, φ, ψ,
D, and (L/D) sin σ. The other variables, r, γ, α, and
σ, have been extracted as described previously.

Summary
The Space Shuttle’s 2D entry trajectory planning

method has been extended to three dimensions. Both
angle-of-attack and angle-of-bank variations are used
to control the entry trajectory. The trajectory plan-
ning is performed with a third-order system of dif-
ferential equations using the drag and lateral acceler-
ations as intermediate controls. A feasible trajectory
planning approach and an optimal trajectory planning
approach have been discussed. Numerical results for
the optimal reduced-order planning, including compar-
isons with optimal full-order solutions, illustrated the
capabilities and attributes of the approach.
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Fig. 6 Solutions from Reduced-Order Planning (solid line) and OTIS (dashed line) for Similar Problem
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