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Abstract

Lyapunov exponents and direction �elds are used to
characterize the time-scales and geometry of general
linear time-varying (LTV) systems of di�erential equa-
tions. Lyapunov exponents are already known to cor-
rectly characterize the time-scales present in a general
LTV system; they reduce to real parts of eigenvalues
when computed for linear time-invariant(LTI) systems
and real parts of Floquet exponents when computed
for periodic LTV systems. Here, we bring to light new
invariance properties of Lyapunov direction �elds to
show that they are analogous to the Schur vectors of
an LTI system and reduce to the Schur vectors when
computed for LTI systems. We also show that the
Lyapunov direction �eld corresponding to the smallest
Lyapunov exponent when computed for an LTI system
(with real distinct eigenvalues) reduces to the eigenvec-
tor corresponding to the smallest eigenvalue and when
computed for a periodic LTV system (with real distinct
Floquet exponents), reduces to the Floquet direction
�eld corresponding to the smallest Floquet exponent.

1 Introduction

In the e�ort towards understanding the geometric
structure and qualitative behavior of the state-space
ow of smooth �nite-dimensional nonlinear dynamical
systems of the form

_x = f(x) ; x 2 Rn (1)

where f(�) : Rn ! TRn is a smooth vector �eld, a
commonly adopted �rst step is to study the linearized
dynamics about a reference orbit (�) of Eq.(1), i.e.,
_ = f((t)). Linear time-varying (LTV) systems of
interest to us typically arise from such a linearization
about a reference orbit which we assume to be smooth
and bounded. The resulting LTV system is given by

� _x =

�
@f((t))

@x

�
= A(t)�x (2)

where �x 2 TxR
n and where A(t) 2 Rn�n is assumed

to have bounded entries. Recall that the transition

matrix �(t; �) associated with the LTV system is given
by

@�

@t
= A(t)� ; �(�; �) = In (3)

where In is the identity matrix of order n. Unlike LTI
systems, no closed form expression exists in general
relating the transition matrix � of an LTV system to
A(t). Also note that �x(t) = �(t; �)�x(�) for all t; � 2
R.

The LTV system determines how tangent vectors are
mapped between the di�erent tangent spaces T(t)R

n

along the reference trajectory. Knowledge of the di-
rections of tangent vectors that grow/decay at ex-
tremal rates when mapped by the ow determined by
the LTV system and their corresponding rates of ex-
pansion/contraction yields information about conver-
gence/divergence of state trajectories neighboring (�)
and their corresponding rates. A complete spectral
characterization of the LTV dynamics aims at uncov-
ering the di�erent asymptotic rates of growth/decay
of solutions of the LTV system along with their corre-
sponding directions. Geometrically speaking, we seek
linearly independent time-varying direction �elds along
(�) that identify the di�erent characteristic directions
on each tangent space T(t)R

n along the reference tra-
jectory.

When the reference trajectory is an isolated equilib-
rium point of Eq.(1), i.e., (t) = 0 for all t 2 R,
the resulting LTV system becomes linear time-invariant
(LTI) and is determined by A(t) = A = constant for
all t 2 R. The spectral structure of an LTI system,
� _x = A�x, is completely characterized by the eigenval-
ues and eigenvectors of the matrix A. When the refer-
ence trajectory is an isolated periodic orbit of Eq.(1),
i.e, (t+ kT ) = (t) for all t 2 R; k 2 Z where T 2 R+

is the minimal period, the spectral structure of the re-
sulting periodic LTV system is determined by Floquet
theory [3]. A vast body of literature [1, 8, 10, 11, 12]
exists on e�orts to characterize the spectral structure
of general LTV systems which arise when the reference
trajectory is not necessarily either an equilibrium point
or a periodic orbit, beginning with the pioneering work



of Lyapunov [7] in his 1892 thesis. Lyapunov intro-
duced the notion characteristic exponents to character-
ize solutions of LTV dynamics with extremal evolution
rates which have since received a lot of attention from
theoretical and computational perspectives [1, 2]. The
same cannot be said of the associated Lyapunov direc-
tion �elds. By investigating the invariance properties
of Lyapunov direction �elds we show that in addition to
identifying directions of extremal growth/decay of so-
lutions, they span invariant distributions (see [6] for a
description of distributions) analogous to the invariant
subspaces spanned by Schur vectors of LTI dynamics.

1.1 Lyapunov Exponents

The theory of Lyapunov exponents is described in well-
known texts [5, 9]. For regular LTV systems [1, 2,
9], the Lyapunov exponents are well-de�ned limits on
tangent subbundles of (�) on which the evolution rates
are extremal. They are given by [5]

�i[�xi] = lim
t!1

�
1

t

�
ln (k�xi(t)k)

) �i[�xi] = lim
t!1

�
1

t� �

�
ln (k�(t; �)�xi(�)k)

where �xi(t) ; 1 � i � n constitute a set of normal
basis solutions [5] of Eq.(2). In the sequel, we assume
that LTV systems of interest possess the property of
regularity.

It is important to note that Lyapunov exponents are
constants over the entire trajectory (�) and are in-
dependent of the starting point (�). Also, the expo-
nents are known to be invariant under Lyapunov trans-
formations [5]. Lyapunov exponents computed for an
LTI system yield the real parts of the eigenvalues and
when computed for a periodic LTV system yield the
real parts of the Floquet exponents (see [5],Thm. 63.4).

1.2 Lyapunov Directions

The Lyapunov directions at any given time along the
reference trajectory (�) point in the direction of ex-
tremal average rates of growth/decay. So, they can
be determined at any initial time � by vectors �xi(�)
which extremize k�(t; �)�xi(�)k as t ! 1. The solu-
tions �xi(�) to this extremization problem is given by
the eigenvectors of limt!1(�

T (t; �)�(t; �))1=2t [2].

Greene and Kim [4] have shown that when the time-
scales given by the Lyapunov exponents are distinct,
the corresponding Lyapunov directions depend only on
the position in state space given by (�). The Lya-
punov direction �elds are everywhere orthogonal and
determine directions at each point along the reference
trajectory along which the average growth/decay rate
is extremal. However, Lyapunov direction �elds in gen-
eral are not solutions of the LTV system. For example,

when the Lyapunov directions are propagated forward
from some time � they do not in general remain or-
thogonal. In other words, not all of the Lyapunov di-
rection �elds are invariant under the linear ow of the
LTV dynamics. In the following section we investigate
the invariance properties of Lyapunov direction �elds
for regular LTV systems with distinct Lyapunov expo-
nents.

2 Invariance Properties of Lyapunov Direction

�elds

The following lemma shows that when a particular Lya-
punov direction is propagated forward by the linear
ow, the time-evolved direction can develop compo-
nents only along Lyapunov direction �elds associated
with smaller Lyapunov exponents.

Lemma 1 Consider a regular LTV system of the form

(2) which has the distinct ordered Lyapunov exponents

�i; i = 1; : : : ; n where �1 > : : : > �n and corresponding

time-varying directions li(t); i = 1; : : : ; n for all t 2 R.

Propagate these directions li(�) forward from an initial

time � to t; t > � using the transition matrix so that

mi(t) = �(t; �)li(�). Then

hmi(t); lj(t)i =

(
0 if i > j;

nonzero if i � j
(4)

where h�; �i denotes the inner product and 1 � i; j � n.

Proof: Recall that the Lyapunov exponents �i are
computed by

�i[li] = lim
t!1

�
1

t� �

�
ln (k�(t; �)li(�)k) (5)

where the Lyapunov directions li(t) are mutually or-
thogonal at each t 2 R because they arise from the
computation of eigenvectors of a symmetric matrix.
Therefore

hli(�); lj(�)i = �ij =

(
0 if i 6= j;

1 if i = j

for all 1 � i; j � n. However, when propagated forward
from time � to t1 > � using �(t1; �), the propagated
vectors mi(t1) = �(t1; �)li(�) are in general no longer
mutually orthogonal.

Let us assume that hmi(t1); lj(t1)i 6= 0 for all i > j and
show that we arrive at a contradiction. Since vectors
lj(t1) are linearly independent (in fact orthogonal), we
can express the vectors mi(t1) as linear combinations
of lj(t1). For each i, let

mi(t1) =

nX
j=1

cij lj(t1) (6)



The above assumption then corresponds to cij 6= 0 for
all i > j.

Eq. (6) implies that for each i,

�(t; t1)mi(t1) =

nX
j=1

cij�(t; t1)lj(t1)

As t becomes large, the right hand side is dominated
by the term corresponding to the vector lj ; j = j� for
which �(t; t1)lj�(t1) is the largest and cij� 6= 0. Since
we have assumed the Lyapunov exponents (which de-
termine the rates of change in size of vectors when prop-
agated by the linear ow) to be arranged in descending
order, the dominant term corresponds to when j� is the
smallest positive integer for which cij� 6= 0.

Recall that the Lyapunov exponents �i are constants
along the reference trajectory (�) and independent
of the starting point (�) on the reference trajectory.
Compute the Lyapunov exponents from the initial di-
rections mi(t1) using

�i = lim
t!1

�
1

t� t1

�
ln (k�(t; t1)mi(t1)k) (7)

In the light of the earlier argument, we can see that
k�(t; t1)mi(t1)k ! cij�k�(t; t1)lj�k as t!1 and that
�i = �j� .

This contradicts the fact that Lyapunov exponents are
constants independent of the starting point on the ref-
erence trajectory unless j� = i. The condition j� = i

holds if and only if cij = 0 for all i > j. Since this
discussion is valid for any time t1 > � , we drop the
subscript and conclude that

hmi(t); lj(t)i =

(
0 if i > j;

nonzero if i � j

for all times t > � .

A direct consequence of the above lemma is the follow-
ing theorem.

Theorem 1 For any 1 � k � n, the Lyapunov di-

rection �elds corresponding to the k smallest Lyapunov

exponents of the LTV system (2) de�ne an invariant

distribution �((t)) = spanfln�k+1(t); : : : ; ln(t)g.

Proof: Consider the Lyapunov directions
ln�k+1(�); : : : ; ln(�) at some initial time � which cor-
respond to the k smallest Lyapunov exponents. When
propagated forward to time t, let mi(t) = �(t; �)li(�)
for all n � k + 1 � i � n. Lemma 1 im-
plies that at time t, spanfmn�k+1(t); : : : ;mn(t)g =
spanfln�k+1(t); : : : ; ln(t)g. This is because, the direc-
tions mn�k+1(t); : : : ;mn(t) cannot have components

along any of the directions l1(t); : : : ; ln�k(t). Conse-
quently, if v 2 �((�)) then �(t; �)v 2 �((t)) for all
t > � . Therefore � is an invariant distribution.

The above theorem and and lemma show that for regu-
lar LTV systems with distinct Lyapunov exponents the
Lyapunov direction �elds de�ne a collection of invari-
ant distributions �k(�) = spanflk; : : : ; lng such that
dim(�k) = n � k + 1 and �1 � : : : � �n. When
�x(t) 2 �i then k�x(t)k � Ke�it where K is a positive
constant. When these results are applied to an LTI
system (typically resulting from linearizing nonlinear
dynamics about an equilibrium point 0), the distribu-
tions �i become subspaces Wi of T0R

n . So the Lya-
punov directions reduce to Schur vectors that span the
respective nested invariant subspaces W1 � : : : � Wn.
This establishes that the Lyapunov direction �elds for
an LTV system are time-varying analogs of Schur vec-
tors for an LTI system.

Since a special case of the above theorem where k = 1
has many important consequences, we present it as a
separate result.

Theorem 2 The direction �eld ln(�) corresponding

to the smallest Lyapunov exponent �n is invariant

when propagated using the transition matrix, i.e.,

�(t; �)ln(�) = �n(t; �)ln(t).

Proof: For the LTV system (2) with Lyapunov
exponents �1 > : : : > �n, ln(t) is the direction �eld
corresponding to the smallest Lyapunov exponent �n.
Applying Lemma 1 to the direction ln(�) results in

h�(t; �)ln(�); lj(t)i = 0 ; 8 j 6= n (8)

This implies that at time t, the direction ln(t) points
in the same direction as mn(t) = �(t; �)ln(�), i.e,

�(t; �)ln(�) = �n(t; �)ln(t) (9)

where �n(t; �) is the scaling factor that determines that
rate of growth of the size of ln(�). Hence we have shown
that the Lyapunov direction �eld ln(�) corresponding
to the smallest Lyapunov exponent is invariant when
propagated by the transition matrix.

The following important corollaries and examples fur-
ther justify the validity of the direction information
provided by this Lyapunov direction �eld as an accu-
rate generalization by showing that it is indeed consis-
tent with the known results in the special cases of LTI
systems and periodic LTV systems.

Corollary 1 The Lyapunov direction corresponding to

the smallest Lyapunov exponent, computed for an LTI



system � _x = A�x (which is assumed to have real and

distinct eigenvalues ordered from largest to smallest),

points in the same direction as the eigenvector direction

corresponding to the smallest eigenvalue.

Proof: As stated earlier, it is already known that the
Lyapunov exponents of an LTI system are the same as
(real parts of) the eigenvalues of A. Theorem 2 states
that the Lyapunov direction ln corresponding to the
smallest Lyapunov exponent satis�es the condition of
invariance when propagated using �(t; �) = exp(A �

(t� �)). Therefore �(t; �)ln = �n(t� �)ln where �n =
exp(�n � (t � �)), i.e., ln is an eigenvector of � with
eigenvalue �n which is the same as the eigenvector of
A corresponding to the smallest eigenvalue.

The following example shows that the Lyapunov direc-
tions computed for an LTI system reduce to the Schur
vectors and in addition illustrates the above corollary.

Example 1 Consider the LTI system � _x = A�x where

A =

�
�6 5
4 �5

�
(10)

The eigenvalues of A are �1 = �1 ; �2 = �10
and the corresponding eigenvectors are e1 = [1; 1] and
e2 = [5;�4] respectively. The Schur vectors obtained

by orthogonalizing the eigenvectors are s2 = e2 and

s1 = [4; 5].

The transition matrix of this LTI system is given by

�(t; �) = exp(A � (t� �)) = (1=9)[�ij ] where

�11 = 4e�(t��) + 5e�10(t��)

�12 = �5e�10(t��) + 5e�(t��)

�21 = �4e�10(t��) + 4e�(t��)

�22 = 5e�(t��) + 4e�10(t��)

The eigenvalues of �T (t; �)�(t; �) are

�1;2(t; �) = (e�2(t��))(w �

q
(w2 � 6561e�18(t��)))

where w = 41e�18(t��)� e�9(t��) + 41. The Lyapunov

exponents are given by

�1;2 = lim
t!1

1

2(t� �)
ln(�1;2) (11)

As t!1, �1(t; �) ! a exp(�2(t� �)) and �2(t; �)!
b exp(�20(t � �)) where a and b are some constants

whose true value is unimportant for our purpose.

Therefore we �nd the Lyapunov exponents �1 = �1
and �2 = �10 which are the same as the eigenvalues

�1 and �2 of A. The corresponding Lyapunov direc-

tions are given by the eigenvectors of �T (t; �)�(t; �) as
t!1. They are

l1;2 = lim
t!1

�
�9e�9(t��) + 9� (

p
(w2 � 6561e�18(t��)))

41e�18(t��) � e�9(t��) � 40

�

Therefore, l2 = [50;�40] and l1 = [�32;�40] which
point in the same directions as the Schur vectors s2
and s1 respectively. Also note that l2 points in the same

direction as e2.

We shall now show through the following corollary that
the result of Theorem 2 is also consistent with the re-
sults of Floquet theory when applied to periodic LTV
systems.

Corollary 2 The Lyapunov direction �eld correspond-

ing to the smallest Lyapunov exponent, computed for a

periodic LTV system � _x = A(t)�x with A(t+T ) = A(t)
(which is assumed to have real and distinct Floquet ex-

ponents ordered from largest to smallest) points in the

same direction as the Floquet direction �eld correspond-

ing to the smallest Floquet exponent.

Proof: As stated earlier, it is already known that the
Lyapunov exponents of a periodic LTV system are the
same as (real parts of) the Floquet exponents. The-
orem 2 states that the Lyapunov direction �eld ln(�)
corresponding to the smallest Lyapunov exponent sat-
is�es the invariance condition. Therefore

�(t; �)ln(�) = �n(t; �)ln(t) (12)

where �n = exp(�n � (t � �)). We know that the Lya-
punov direction �elds are dependent only on the posi-
tion in state space along the reference trajectory (�).
In this case, (�) is periodic, i.e., (� + T ) = (�).
Consequently, ln(� + T ) = ln(�), i.e., ln(�) is periodic.
Together with the invariance condition, we get

�(� + T; �)ln(�) = exp(�nT )ln(�) (13)

This implies that ln(�) is an eigenvector of �(� + T; �)
corresponding to Floquet exponent �n = �n. This
shows that ln(�) is a periodic direction �eld pointing
in the same direction as the Floquet direction �eld cor-
responding to the smallest Floquet exponent.

We shall illustrate this corollary with the following ex-
ample.

Example 2 Consider the periodic LTV system � _x =



A(t)�x where A(t) = [Aij(t)] so that

A11(t) = �
1

2
cos 2t+

9

2
sin 2t�

11

2

A12(t) =
1

2
sin 2t+

9

2
cos 2t+

3

2

A21(t) =
1

2
sin 2t+

9

2
cos 2t�

3

2

A22(t) = �
9

2
sin 2t+

1

2
cos 2t�

11

2

with period T = �. This system was constructed from

the LTI system in example 1 represented here as � _x =
B�x with a periodic transformation �x = S(t)�x where

B =

�
�6 5
4 �5

�
; S(t) =

�
cos t � sin t
sin t cos t

�
(14)

so that A(t) = S�1(t)BS(t)�S�1(t) _S(t). The Floquet

exponents turn out to be �1 = �1 and �2 = �10. The
corresponding periodic Floquet direction �elds are given

by

e1(t) =

�
cos t+ sin t
� sin t+ cos t

�
; e2(t) =

�
5 cos t� 4 sin t
�5 sin t� 4 cos t

�

The transition matrix for this periodic LTV system is

given by


(t; �) = ST (t)�(t; �)S(�) (15)

where �(t; �) is the transition matrix in example 1.

The Lyapunov exponents and associated directions are

computed from the eigenvalues and eigenvectors of


T (t; �)
(t; �) as t!1. Note that


T (t; �)
(t; �) = ST (�)�T (t; �)�(t; �)S(�) (16)

because S(t)ST (t) = In. Consequently, the eigenvalues

of 
T
 are the same as the eigenvalues of �T� and its

eigenvectors are related to that of �T� by the transfor-

mation ST (�). Therefore, the Lyapunov exponents of

the periodic LTV system turn out to be �1 = �1 and

�2 = �10 which are the same as the Floquet exponents.

The direction �eld corresponding to the smallest Lya-

punov exponent �2 computed from the eigenvector of


T (t; �)
(t; �) as t!1 is given by

l2(�) = ST (�)

�
5
�4

�
=

�
5 cos � � 4 sin �
�5 sin � � 4 cos �

�
(17)

which is the same as the Floquet direction �eld corre-

sponding to the smallest Floquet exponent.

3 Conclusions

Lyapunov direction �elds span invariant distributions
on which the average asymptotic evolution rates of so-
lutions of the LTV dynamics are extremal. They reduce

to Schur vectors when computed for an LTI system
thereby establishing that they are appropriate time-
varying analogs of Schur vectors. In particular, the
Lyapunov direction �eld corresponding to the small-
est Lyapunov exponent is invariant under the linear
ow and this direction �eld is consistent with the cor-
responding eigenvector when computed for LTI dynam-
ics and with the corresponding Floquet direction �eld
when computed for periodic LTV dynamics. Illuminat-
ing examples were presented to illustrate these results.
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